
MTHE 227 Problem Set 9
Due Thursday November 17 2016 at the beginning of class

1 (Cross-Product in R2 and R3). For this problem, to help distinguish between the cross-
products in 2- and 3-space, for vectors

v1 = (x1, y1), v2 = (x2, y2) in R2 and w1 = (x1, y1, z1), w2 = (x2, y2, z2) in R3,

write

cross2(v1, v2) = det(x1 y1
x2 y2

) and cross3(w1, w2) = det
⎛
⎜
⎝

ex ey ez
x1 y1 z1
x2 y2 z2

⎞
⎟
⎠
.

Embed R2
(x,y)

into R3
(x,y,z)

by the map (x, y)↦ (x, y,0) (the image being the plane z = 0).

(a) Let v1, v2 be vectors in R2
(x,y)

and w1, w2 their images under the embedding. Check
that

cross2(v1, v2) = cross3(w1, w2) ⋅ ez .

(b) Let r ∶ t ↦ (x(t), y(t),0), t ∈ [a, b] be a parametrized path in R3
(x,y,z)

(thought of as

the image of a parametrized path in R2
(x,y)

under the above embedding). Denote the

velocity vector at time t by r′(t) = (x′(t), y′(t),0). Check that

n+(t) ∶= ( y′(t), −x′(t), 0 ) = cross3(r′, ez) and

n−(t) ∶= (−y′(t), x′(t), 0 ) = cross3(ez, r′).

***

Optional Problem (Harder). Embed R2
(x,y)

, R2
(y,z)

and R2
(x,z)

into R3
(x,y,z)

as the planes z =
0, x = 0 and y = 0, respectively. Let πz ∶ R3

(x,y,z)
→ R2

(x,y)
be the projection map (x, y, z) ↦

(x, y), and similarly define πx, the projection onto R2
(y,z)

, and πy, the projection onto R2
(x,z)

.

Let P be a parallelogram in R3, and denote its images under the above projections by
Px = πx(P ), Py = πy(P ) and Pz = πz(P ). Show that

area(P ) =
√

area(Px)2 + area(Py)2 + area(Pz)2.

Conclude, by applying the Cauchy-Schwarz inequality or otherwise, that

area(P ) ≥ 1√
3
(area(Px)+area(Py)+area(Pz)) =

√
3⋅Arithmetic Mean(area(Px), area(Py), area(Pz)).

Can you find a P for which equality holds?
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2 (Triple Cross Product). Find three vectors u, v, w in R3 such that

(u × v) ×w ≠ u × (v ×w).

(If you are stuck, there is a suggestion at the end of the problem set. But try to find the
vectors yourself — there are many possibilities.)

***

Optional Problem (Messy). Show the identity

(u × v) ×w = (u ⋅w)v − (v ⋅w)u

by expanding out in coordinates, and conclude that

u × (v ×w) = (u ⋅w)v − (u ⋅ v)w.

Conclude that (u×v)×w = u×(v×w) if and only if either: u and w are both perpendicular
to v, or u = λw for some λ ∈ R.

Also, conclude that

u × (v ×w) + v × (w × u) +w × (u × v) = 0 (the Jacobi identity).

3 (Examples of Centroids of Curves). In lecture, we learned how to compute the coordinates
of the center of mass of a curve C in R3. When C has uniform unit density (that is, δ = 1),
the center of mass of C is also called the centroid. The coordinates of the centroid of C are
then

1

∫C ds
(∫

C
xds, ∫

C
y ds, ∫

C
z ds) .

A similar expression is true for a curve in R2, omitting the z-coordinate.
Find the centroids of the following curves in R2. You may use symmetry arguments to

reduce the number of computations you need to do.

(a) The line segment parametrized by t↦ (t, mt), t ∈ [0, 1
m], where m > 0 is the slope.

(b) The right semicircle t ↦ (a cos(t), a sin(t)), t ∈ [−π2 , π2 ] of radius a centered at the
origin.

(c) The circle t↦ (b+a cos(t), a sin(t)), t ∈ [0,2π] of radius a centered at (b,0), with b > a
(feel free to write down the answer without computation if you see it).

(d) The piecewise curve C = C1+C2+C3, where C1 is the line segment from (0, b) to (a, b),
C2 the line segment from (a, b) to (a,−b), and C3 the line segment from (a,−b) to
(0,−b), where a > 0 and b > 0. The curve C is a a × 2b rectangle, with the left side
missing.

(e) Find the integral ∫C xds for the parabola segment t↦ (t, t2), t ∈ [0,1].

***

Optional Problem (Harder). Find the coordinates of the centroid of the parabola segment in
part (e). The standard approach to the integrals involved uses sinh-substitution (!).
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4 (Surfaces of Revolution). A surface of revolution is the surface obtained by rotating a
plane curve C about a line ` (called the axis of rotation) that is coplanar with C.

`

C

To obtain a surface according to the definition in lecture, we require that ` does not intersect C, except pos-

sibly at the endpoints of C. To obtain a smooth surface (except for at most finitely many nonsmooth curves,

which do not affect surface area), we require that there exists a parametrization t ↦ r(t) = (x(t), z(t)), t ∈

[a, b] of C with r′(t) ≠ 0 for all t (with at most finitely many exceptions).

Suppose that C lies in the xz-plane with x > 0, ` is the z-axis, and fix a parametrization
of C as above.

(a) Find the unit vector that is obtained by rotating ex counterclockwise by θ radians
about the z-axis.

(b) Using the parametrization t↦ r(t) = (x(t), z(t)), t ∈ [a, b] of C, parametrize the curve
obtained by rotating C counterclockwise by θ radians about the z-axis (it will lie in the
plane spanned by ez and the vector from part (a)). Your parametrization will involve
the functions x(t) and z(t).

(c) Parametrize the surface of revolution of C, taking one of the parameters to be the
parameter t of C, and the other parameter to be the angle θ. What do the t- and
θ-coordinate curves look like?

(d) Find the tangent vectors Tt(t, θ) and Tθ(t, θ) at all points.

(e) Find the normal N(t, θ) = Tt(t, θ)×Tθ(t, θ) and its magnitude ∥N(t, θ)∥ at all points.

(f) Show that the surface area of the surface of revolution of C is equal to

2π∫
b

a
x(t)

√
x′(t)2 + z′(t)2 dt = 2π∫

C
xds.

(g) Conclude that the following theorem holds:

Theorem (Pappus). The surface area of the surface of revolution of a curve C is equal
to the product

arclength(C) ⋅ distance travelled by the centroid of C.

(h) For each of the curves in Problem 3, sketch its surface of revolution about the z-axis
and find the surface area using Pappus’s theorem.

Possibility for 2: u = (1,0,0), v = (1,0,0) and w = (0,1,0)

3


