
MTHE 227 Problem Set 8
Due Thursday November 10 2016 at the beginning of class

1 (Path-Connected and Simply-Connected). Which of the following spaces are path-connected?
Which are simply-connected? (For cases that are not path-connected, draw two points that can-

not be joined by a path. For cases that are path- but not simply-connected, draw a simple closed

curve (i.e. a loop) that cannot be continuously deformed to a point while staying in the region.

For cases that are simply-connected, it is enough to state this (you do not have to justify it).)

(a) R2 with the circle x2 + y2 = 1 removed.

(b) R3 with the circle x2 + y2 = 1, z = 0 removed.

(c) The annulus {(x, y) ∶ 1 < x2 + y2 < 2} in R2.

(d) R3 with a point removed.

(e) R3 with a line removed.

(f) R3 with the helix (cos t, sin t, t), t ∈ [0, 4π] removed.

2 (Curl Test). In lecture, we have shown the following theorem:

Theorem (Curl Test). Let F(x, y) = ( F1(x, y), F2(x, y) ) be a vector field defined in a
simply-connected region X. If

curlF ∶=
∂F2

∂x
−
∂F1

∂y
= 0

at every point of X, then F is conservative.
Conversely, let G(x, y) = (G1(x, y), G2(x, y) ) be a vector field defined in any region X

(not necessarily simply-connected). If curlG(x, y) ≠ 0 for some point (x, y) in X, then G is
not conservative.

Applying the curl test, show that the following vector fields defined on R2 are not con-
servative.

(a) ( x sin(y2), y sin(x2) ).

(b) ( 2x + 3y2 + 5x3, 5y + 3x2 + 2y3 ).

On the other hand, show that the following vector fields defined on R2 are conservative,
again applying the curl test (note: R2 is simply-connected, so the curl test applies!):

(c) ( ln y +
y

x
, lnx +

x

y
).

(d) ( (1 + xy) exy, x2exy ).

Remark. We found potential functions for the vector fields of parts (c) and (d) in Problem
Set 4: possibilities are y lnx + x ln y for part (c) and xexy for part (d).
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3 (Curl Test II). Let F be the vector field

F(x, y) = (
−y

x2 + y2
,

x

x2 + y2
) =

1

r
eθ(r, θ)

defined for (x, y) in R2 with (x, y) ≠ (0,0).

(a) Check that curlF = 0 for all (x, y) ≠ (0,0).

(b) Let C be the unit circle centered at the origin, oriented counterclockwise. Check that

∫
C
F ⋅ dr = 2π.

(c) The curl test seems to imply that F is conservative, as curlF = 0 at all points where

F is defined by part (a). If F was conservative, we would have ∫
C
F ⋅ dr = 0 for every

closed curve C. Why doesn’t part (b) then contradict the curl test?

Now, let G be the same vector field, but restricted to the smaller region Y = {(x, y) ∶ x > 0}.

(d) Check that

G = ∇(arctan(
y

x
)) .

(e) Recall that arctan(y/x) = θ(x, y) is the polar angle of the point (x, y). Conclude by
the fundamental theorem of calculus for line integrals that for any curve C from point
Q to point P in Y ,

∫
C
G ⋅ dr = θ(P ) − θ(Q).

Remark. For any closed curve, the integral

1

2π ∫C
F ⋅ dr

is called the winding number of C about the origin.

4 (Using Green’s Theorem to Compute Area). Define the following vector fields on R2:

F1(x, y) = (−
y

2
,
x

2
) , F2(x, y) = (−y,0), F3(x, y) = (0, x).

Let C be a simple closed curve, and let R be the region bounded by C. Orient C so that R
appears on the left as one goes around C.

(a) Apply Green’s Theorem to show that ∫
C
Fi ⋅ dr = Area(R) for each i = 1,2,3.

(b) (Ellipse) Find the area bounded by the ellipse
x2

a2
+
y2

b2
= 1 (try F1).
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(c) (Arc of a Cycloid) Near the beginning of the course, we have seen that the path of a
fixed point on the circumference of a unit circle rolling without slipping at unit speed
may be parametrized by

t↦ (t − sin(t), 1 − cos(t)), t ∈ R.

As t varies in [0,2π], a single arc of the motion is traced out. Let C1 denote this arc.

The curve C1 is not closed. However, we can still apply Green’s theorem to the piece-
wise curve C = C1 +C2, where C2 is the line segment from (2π,0) to (0,0)! Compute

∫C F2 ⋅ dr, and explain why this is equal to negative of the area under the arc of the
cycloid.

(d) (The Folium of Descartes) Find the area of the region bounded by the loop of the
folium of Descartes x3 + y3 = 3xy:

The loop may be parametrized (with orientation as in Green’s theorem) by

t↦ (
3t

1 + t3
,

3t2

1 + t3
) , t ∈ [0,∞)

(try F3 — the computation will take a little work).

Remark. The trick used in part (c) — closing up a curve to make it possible to apply Green’s
theorem — is a useful one.
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