
Mthe 237 — Problem Set 11 Solutions

1. When a matrix A is diagonalizable, the corresponding diagonal matrix is the Jordan
canonical form of A. Therefore, we already have a way of finding a basis that puts a matrix
into its Jordan canonical form in the diagonalizable case — take the eigenvectors of the
matrix as the basis.

The purpose of this problem is to develop a way of finding a basis of R2 in which a
nondiagonalizable 2 × 2 matrix is in its Jordan canonical form.

Let A be a 2 × 2 matrix whose characteristic polynomial pA(z) = det(A − zI) = (z − λ)2
has λ as a real double root.

Let
Eλ = {v ∈ R2 ∶ Av = λv}

be the eigenspace corresponding to λ.
Suppose that

dimEλ = 1.

Thus, λ is an eigenvalue of A with algebraic multiplicity 2 and geometric multiplicity 1.
The following theorem has many applications.

Thm (Cayley-Hamilton). Let pA(z) be the characteristic polynomial of A. Then pA(A) = 0.

In our case, pA(z) = (z − λ)2, so the Cayley-Hamilton theorem says that (A − λI)2 = 0.
This last fact is useful in finding the Jordan basis.

To be self-contained, let’s begin by showing that (A − λI)2 = 0 with an elementary
computation, without use of the Cayley-Hamilton theorem. Label the entries of A as follows:

A = (a b
c d

) .

i) Show that
pA(z) = z2 − (a + d)z + (ad − bc).

The function a+d of the entries of the matrix is called the trace of A and the function ad−bc
is called the determinant of A.

ii) Conclude from the hypothesis pA(z) = (z − λ)2 that

a + d = 2λ

ad − bc = λ2. (1)

iii) Show that the two equalities of (1) imply that
(a − d)2

4
+ bc = 0.

iv) Show that λ = (a + d)/2 and, using the result of part iii), conclude that

(A − λI)2 = 0.
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Now, let w be any nonzero vector in R2 but not in Eλ (such vectors exist, because R2 is
two-dimensional and Eλ is one-dimensional). Let v = (A − λI)w.

v) Show that Aw = v + λw.

vi) Show that (A − λI)v = 0. Conclude that Av = λv. Conclude that v ∈ Eλ, and that v
and w are linearly independent.

vii) Conclude that the matrix of A with respect to the ordered basis {v, w} is

[A]
{v,w} = (λ 1

0 λ
) .

Therefore, A is in Jordan canonical form in the basis {v, w}!

viii) Find a basis that puts the matrix

B = (10 4
−9 −2) .

into Jordan canonical form. (Find the eigenvalue of B and its eigenspace, then choose
a nonzero w outside of the eigenspace, and take v = (B − λI)w.)

ix) Show that

exp(Bt) = (e
4t + 6t e4t 4t e4t

−9t e4t e4t − 6t e4t
) .

x) Sketch the flow lines of the following first-order system, and find a parametrization of
the flow line through the given point:

(ẋ
ẏ
) = (10 4

−9 −2)(x
y
) , x(0) = 2, y(0) = −1.

The way one finds Jordan canonical forms of larger matrices has a similar flavour, building bases out of

chains of vectors of the form (A − λI)kw. A complete treatment, including a proof of existence of Jordan

canonical form for an arbitrary matrix with complex entries, is done in Math 212. Alternatively, a good

reference is the textbook Friedberg, Insel, Spence, Linear Algebra, §7.1–7.2.

Solution. i) We have

pA(z) = det(a − z b
c d − z)

= (a − z)(d − z) − bc
= ad − (a + d)z + z2 − bc
= z2 − (a + d)z + (ad − bc).
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ii) Expanding (z − λ)2, we have

(z − λ)2 = z2 − 2λz + λ2.

Because {1, z, z2} is a basis for the vector space of polynomials with real (or complex)
coefficients of degree ≤ 2, we can compare coefficients of both sides of the equality

z2 − (a + d)z + (ad − bc) = (z − λ)2 = z2 − 2λz + λ2

and conclude that

a + d = 2λ

ad − bc = λ2.

Alternatively, evaluate both polynomials at z = 0 to conclude that ad − bc = λ2. Then,
differentiate both polynomials (getting 2z − (a + d) = 2z − 2λ) and evaluate the result
at z = 0 to conclude that a + d = 2λ.

iii) From the equality a + d = 2λ, we have (a + d)/2 = λ. Therefore,

(a + d)2
4

= λ2 = ad − bc.

Bringing all of the terms to the left side, we get

0 = (a2 + 2ad + d2)
4

− ad + bc = (a2 − 2ad + d2)
4

+ bc = (a − d)2
4

+ bc.

iv) The matrix of (A − λI) is

(a −
a+d
2 b

c d − a+d
2

) = (
a−d
2 b
c d−a

2

) .

Squaring, we get

(A − λI)2 = (
a−d
2 b
c d−a

2

)(
a−d
2 b
c d−a

2

) =
⎛
⎝

(a−d)2

4 + bc a−d
2 b + b d−a2

c a−d2 + d−a
2 c bc + (d−a)

2

4

⎞
⎠

=
⎛
⎝

(a−d)2

4 + bc a−d
2 b − b a−d2

c a−d2 − a−d
2 c bc + (a−d)

2

4

⎞
⎠

= (0 0
0 0

) .

v) By construction, v = (A − λI)w = Aw − λw, so that

Aw = v + λw.
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vi) From part iv), we know that (A − λI)2 = 0. Therefore,

(A − λI)v = (A − λI)2w = 0.

It follows that Av−λv = 0, so that Av = λv. By definition of Eλ, we then have v ∈ Eλ.
If av + bw = 0, then

av = −bw.
Every element of the left side is in Eλ. Since w was chosen outside of Eλ, −bw ∉ Eλ
unless b = 0. Therefore, b = 0. Finally, since v ≠ 0 (otherwise we would have (A−λI)w =
0, so that w ∈ Eλ), av = 0 only if a = 0. Therefore, a = b = 0, which shows that v and
w are linearly independent.

vii) By definition, the matrix representing A with respect to the basis {v, w} is

[A]
{v,w} = ([Av]

{v,w} [Aw]
{v,w}) ,

where [Av]
{v,w} and [Aw]

{v,w} are the coordinate vectors of Av and Aw, respectively,
with respect to the basis {v, w}.

By the previous parts,
Av = λv + 0w,

so that

[Av]
{v,w} = (λ

0
)

and
Aw = v + λw,

so that

[Aw]
{v,w} = (1

λ
) .

Therefore,

[A]
{v,w} = (λ 1

0 λ
) .

viii) The characteristic polynomial of B is

pB(z) = det(10 − z 4
−9 −2 − z) = (10 − z)(−2 − z) + 36

= −20 + 8z + z2 + 36

= (z − 4)2.

Therefore, the only eigenvalue of B is λ = 4 (of algebraic multiplicity 2).

Looking for eigenvectors,

ker(A − 4I) = ker(10 − 4 4
−9 −2 − 4

) = ker( 6 4
−9 −6)
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We see that dim ker = dimEλ = 1. (The two rows of A − 4I are linearly dependent, so
dim ker ≥ 1. However, the matrix is not the zero matrix, which is the only 2× 2 matrix
that has a two-dimensional kernel.)

The condition for a vector to be in the kernel of A−4I is 6x+4y = 0, so the eigenspace
Eλ is spanned by

( 2
−3) ,

(there are many other choices of a spanning vector, of course).

We have to choose a vector w outside of Eλ. There are many possibilities. A simple

one is w = (1
0
).

Then, by the method developed above, take

v = (A − 4I)w = ( 6 4
−9 −6)(1

0
) = ( 6

−9) .

The (ordered) basis

{v = ( 6
−9) , w = (1

0
)}

puts B into its Jordan canonical form.

We have

B = ( 6 1
−9 0

)(4 1
0 4

) 1

9
(0 −1

9 6
) .

ix) Continuing from the previous part,

exp(Bt) = ( 6 1
−9 0

) exp((4t t
0 4t

)) 1

9
(0 −1

9 6
)

= ( 6 1
−9 0

)(e
4t t e4t

0 e4t
) 1

9
(0 −1

9 6
)

= 1

9
( 6 1
−9 0

)(9t e4t −e4t + 6t e4t

9e4t 6e4t
)

= 1

9
(54t e4t + 9e4t −6e4t + 36t e4t + 6e4t

−81t e4t 9e4t − 54t e4t
)

= (6t e4t + e4t 4t e4t

−9t e4t e4t − 6t e4t
) .

x) The flow lines look as follows
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x

y

v-span

The flow line with (x(0)
y(0)) = ( 2

−1) is

exp(Bt)( 2
−1) = (6t e4t + e4t 4t e4t

−9t e4t e4t − 6t e4t
)( 2
−1) = ( 8t e4t + 2e4t

−12t e4t − e4t) .

2. For each of the following two systems, find the solution using the Method of Variation of
Parameters.

i) (ẋ
ẏ
) = ( 0 1

−1 0
)(x
y
) + (0

t
) , (x(0)

y(0)) = (1
1
) .

ii) (ẋ
ẏ
) = (2 3

1 4
)(x
y
) + (0

1
) , (x(0)

y(0)) = (1
0
) .

Solution. i) The matrix C = ( 0 1
−1 0

) is already of the form ( σ ω
−ω σ

), so we have

exp(Ct) = ( cos(t) sin(t)
− sin(t) cos(t)) .

By Variation of Parameters, the solution of the system

ẋ = Cx + (0
t
) , x(0) = (1

1
)
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is

x(t) = exp(Ct)x0 + ∫
t

0
exp(C(t − τ))(0

τ
) dτ.

Let’s first compute the integrals —

exp(C(t − τ))(0
τ
) = ( cos(t − τ) sin(t − τ)

− sin(t − τ) cos(t − τ))(0
τ
)

= (τ sin(t − τ)
τ cos(t − τ)) .

Integrating by parts,

∫
t

0
τ sin(t − τ)dτ = τ cos(t − τ)∣τ=tτ=0 − ∫

t

0
cos(t − τ)dτ

= t cos(0) − [− sin(t − τ)]τ=tτ=0

= t − (− sin(0) + sin(t))
= t − sin(t).

Similarly,

∫
t

0
τ cos(t − τ)dτ = −τ sin(t − τ)∣τ=tτ=0 − ∫

t

0
− sin(t − τ)dτ

= 0 − [− cos(t − τ)]τ=tτ=0

= cos(0) − cos(t)
= 1 − cos(t).

Therefore,

(x(t)
y(t)) = ( cos(t) sin(t)

− sin(t) cos(t))(1
1
) + ( t − sin(t)

1 − cos(t))

= ( cos(t) + sin(t) + t − sin(t)
− sin(t) + cos(t) + 1 − cos(t))

= (cos(t) + t
1 − sin(t)) .

ii) We computed the exponential of the matrix D = (2 3
1 4

) in Problem Set 09. We have

exp(Dt) = 1

4
(3et + e5t −3et + 3e5t

−et + e5t et + 3e5t
) .

Then,

exp(D(t − τ))(0
1
) = 1

4
(−3e

t−τ + 3e5(t−τ)

et−τ + 3e5(t−τ)
) .
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Integrating, we have

∫
t

0

1

4
(−3et−τ + 3e5(t−τ)) dτ = [3

4
et−τ]

τ=t

τ=0

+ [− 3

20
e5(t−τ)]

τ=t

τ=0

= 3

4
− 3

4
et + (− 3

20
+ 3

20
e5t)

= 3

5
− 3

4
et + 3

20
e5t.

Similarly,

∫
t

0

1

4
(et−τ + 3e5(t−τ)) dτ = [−1

4
et−τ]

τ=t

τ=0

+ [− 3

20
e5(t−τ)]

τ=t

τ=0

= −1

4
+ 1

4
et − 3

20
+ 3

20
e5t

= −2

5
+ 1

4
et + 3

20
e5t.

The solution is

(x(t)
y(t)) = exp(Dt)(1

0
) + ∫

t

0
exp(D(t − τ))(0

1
) dτ

= 1

4
(3et + e5t −3et + 3e5t

−et + e5t et + 3e5t
)(1

0
) + (

3
5 − 3

4e
t + 3

20e
5t

−2
5 + 1

4e
t + 3

20e
5t)

= 1

4
(3et + e5t
−et + e5t) + (

3
5 − 3

4e
t + 3

20e
5t

−2
5 + 1

4e
t + 3

20e
5t)

= 1

20
(15et + 5e5t

−5et + 5e5t
) + 1

20
(12 − 15et + 3e5t

−8 + 5et + 3e5t
)

= 1

20
(12 + 8e5t

−8 + 8e5t
)

= 1

5
( 3 + 2e5t

−2 + 2e5t
) .
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