
Mthe 237 — Problem Set 09 Solutions

1. It is sometimes possible to find the curves traced out by solutions1 of a first-order system
of the form

ẋ = v1(x, y)

ẏ = v2(x, y)
(1)

without finding the solutions of the system. The method is to make use of the identity

dy/dt

dx/dt
=

ẏ

ẋ
=

dy

dx
, ẋ ≠ 0

that holds whenever the solution t ↦ (x(t), y(t)) lies on the graph of a (differentiable)
function y(x) (as we have seen in the first lecture!). Thereby, we obtain the differential
equation

dy

dx
=

v2(x, y)

v1(x, y)
(2)

that is satisfied by any function whose graph contains a solution of the system (1).

i) We have seen that the solutions of the system

ẋ = x
ẏ = y

are t↦ et (
x0
y0

) , t ∈ R,

where x(0) = x0, y(0) = y0 are the initial conditions. In other words, the solutions
are paths that trace out open rays starting at the origin and going radially outward to
infinity, as well as the equilibrium solution t↦ (0,0).

Solve equation (2) for this system, and check that the flow lines (with the exception of
the two vertical ones) lie on graphs of the solutions of (2).

ii) Similarly, we have seen that the solutions of the system

ẋ = −y
ẏ = x

are the circles t↦ (A cos(t + φ), A sin(t + φ)), t ∈ R,

where A and φ are determined by the initial conditions x(0) = x0, y(0) = y0 via

A =

√

x20 + y
2
0, tanφ = y0/x0. Solve equation (2) for this system, and check that your

findings are consistent our knowledge of the flow lines.

iii) Solve equation (2) for the following three systems

ẋ = y

ẏ = x
,

ẋ = 1 + 2y

ẏ = 1 + 3x2
,

ẋ = 2x6y − 8x4y3 + 6x2y5

ẏ = 8x3y4 − 6x5y2 − 2xy6
,

and sketch a few of the solutions (either graphs of solutions, or curves that are implicit
solutions) — you can use a computer to help with the sketches (you are not asked to solve

the three systems).
1More precisely, find curves containing the curves traced out by solutions.
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Solution. i) The system of equations is

ẋ = x

ẏ = y,

and eq. (2) for this system is
dy

dx
=

y

x
.

This is a separable equation. Separating variables,

1

y

dy

dx
=

1

x

integrating,
ln ∣y∣ = ln ∣x∣ +C.

Taking exponentials of both sides,

y(x) = Cx, C ∈ R.

The graphs of solutions are a family of lines through the origin, which is consistent
with the picture of flow lines as radial rays.

We can check that if x0 ≠ 0, then the flow line

t↦ et (
x0
y0

)

lies on the graph of

y(x) =
y0
x0
x.

Indeed,

ety0 =
y0
x0
etx0.

ii) Eq. (2) for the system

ẋ = −y

ẏ = x

is
dy

dx
= −

x

y
.

This is again separable.

y
dy

dx
= −x,

so that
y2

2
= −

x2

2
+C,
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and
x2 + y2 = C.

These are equations of circles, which is consistent with our picture of flow lines — we
can check that for the flow line

t↦ (
A cos(t + φ)
A sin(t + φ)

) ,

we have

(A cos(t + φ))2 + (A sin(t + φ))2 = A2
(cos2(t + φ) + sin2

(t + φ)) = A2.

iii) For the system

ẋ = y

ẏ = x,

eq. (2) is
dy

dx
=

x

y
.

Separable, as in the previous two cases —

y
dy

dx
= x,

so that
y2

2
=

x2

2
+C,

or
x2 − y2 = C.

You may recognize these as equations of hyperbolas.

For the system

ẋ = 1 + 2y

ẏ = 1 + 3x2,

eq. (2) is
dy

dx
=

1 + 3x2

1 + 2y
.

Once again, this is separable. We get

(1 + 2y)
dy

dx
= 1 + 3x2,

so that
y + y2 = x + x3 +C.
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Finally, for the system

ẋ = 2x6y − 8x4y3 + 6x2y5

ẏ = 8x3y4 − 6x5y2 − 2xy6,

eq. (2) becomes
dy

dx
=

8x3y4 − 6x5y2 − 2xy6

2x6y − 8x4y3 + 6x2y5
.

Multiplying by 2x6y − 8x4y3 + 6x2y5 and rearranging, we obtain

(6x5y2 − 8x3y4 + 2xy6) + (2x6y − 8x4y3 + 6x2y5)
dy

dx
= 0.

This is an exact equation (indeed,

∂

∂y
(6x5y2 − 8x3y4 + 2xy6) = 12x5y − 32x3y3 + 12xy5 =

∂

∂x
(2x6y − 8x4y3 + 6x2y5)).

Integrating M(x, y) = 6x5y2 − 8x3y4 + 2xy6 with respect to x, we get

x6y2 − 2x4y4 + x2y6 + h(y),

for some function h(y) of y only. Taking the partial of this result with respect to y,
we see that h′(y) = 0, hence implicit solutions are the level curves

x6y2 − 2x4y4 + x2y6 = (x3y + xy3)2 = C.

The level curves describe a spider-web!

2. i) Write down a first-order system
ẋ = Ax (3)

that is equivalent to the equation

dry

dtr
+ ar−1

dr−1y

dtr−1
+⋯ + a1

dy

dt
+ a0y = 0, aj ∈ R. (4)

ii) Let pA(z) = det(A− zI) be the characteristic polynomial of the linear map (or matrix)
A in (3). Show that

pA(z) = (−1)rχ(z),

where χ(z) = zr+ar−1zr−1+⋯+a1z+a0 is the characteristic polynomial of (4). Conclude
that the roots of χ(z) are exactly the eigenvalues of A, with the same multiplicities.

Suggestion: Try the cases r = 2,3,4 first to help see how to do the computation in general.

Solution. i) Rearranging, we have

dry

dyr
= −ar−1

dr−1y

dtr−1
−⋯ − a1

dy

dt
− a0y,
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and an equivalent first-order system (by a Proposition from class) is

ẋ1 = x2

ẋ2 = x3

⋮

ẋr−1 = xr

ẋr = −ar−1xr −⋯ − a1x2 − a0x1

(unfortunately the indexing is off by one.)

This system of equations may be written as a matrix equation:

⎛

⎜
⎜
⎜

⎝

ẋ1
ẋ2
⋮

ẋr

⎞

⎟
⎟
⎟

⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜

⎝

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ 1
−a0 −a1 −a2 ⋯ −ar−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟

⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

⎛

⎜
⎜
⎜

⎝

x1
x2
⋮

xr

⎞

⎟
⎟
⎟

⎠

.

In the matrix A, there are 1’s above each diagonal term.

More compactly, we can write this system down as

ẋ = Ax.

ii) The characteristic polynomial of the matrix A is

det(A − zI) = det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

−z 1 0 ⋯ 0 0
0 −z 1 ⋯ 0 0
0 0 −z ⋱ 0 0
⋮ ⋮ ⋮ ⋱ ⋱ ⋮

0 0 0 ⋯ −z 1
−a0 −a1 −a2 ⋯ −ar−2 −ar−1 − z

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

.

One of the properties of the determinant is that adding a multiple of a row (or column)
to another row (or column, respectively) does not change the determinant.

To cancel out the −z in the first column, let’s add z times the second column to the
first. Unfortunately, the matrix we obtain, namely

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0 1 0 ⋯ 0 0
−z2 −z 1 ⋯ 0 0
0 0 −z ⋱ 0 0
⋮ ⋮ ⋮ ⋱ ⋱ ⋮

0 0 0 ⋯ −z 1
−a0 − a1z −a1 −a2 ⋯ −ar−2 −ar−1 − z

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
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now has a nonzero entry in the second row. Fortunately, adding z2 times the third
column to the first cancels out the −z2. We obtain

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0 1 0 ⋯ 0 0
0 −z 1 ⋯ 0 0
−z3 0 −z ⋱ 0 0
⋮ ⋮ ⋮ ⋱ ⋱ ⋮

0 0 0 ⋯ −z 1
−a0 − a1z − a2z2 −a1 −a2 ⋯ −ar−2 −ar−1 − z

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

which now has a nonzero entry in the third row.

Continue in this manner, adding z3 times the fourth column to the first, and so on,
until adding zr−1 times the last (rth) column to the first.

We obtain a matrix with only the last entry of the first column not equal to zero, and
that entry is −a0 − a1z − a2z2 −⋯ − ar−1zr−1 − zr = −χ(z). The matrix is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0 1 0 ⋯ 0 0
0 −z 1 ⋯ 0 0
0 0 −z ⋱ 0 0
⋮ ⋮ ⋮ ⋱ ⋱ ⋮

0 0 0 ⋯ −z 1
−χ(z) −a1 −a2 ⋯ −ar−2 −ar−1 − z

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

This matrix has the same determinant as det(A − zI).

Expanding along the first column, the sign in front of the −χ(z) term in the Laplace2

expansion is + if r is odd and − if r is even, so that

det(A − zI) = (−1)r−1(−χ(z)) det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1 0 0 ⋯ 0 0
−z 1 0 ⋯ 0 0
0 −z 1 ⋯ 0 0
⋮ ⋮ ⋱ ⋱ ⋮ ⋮

0 0 0 ⋯ 1 0
0 0 0 ⋯ −z 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

.

This last matrix has only 1’s on the diagonal and only 0’s above the diagonal (such
matrices are called lower triangular), so we can continually expand along the first row
to see that the determinant is equal to 1. (More generally, the determinant of a lower
triangular matrix is equal to the product of the diagonal entries, by the same argument
of continually expanding along the first row.)

This then gives the desired conclusion:

det(A − zI) = (−1)rχ(z).

2He’s at it again, that Laplace!
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Alternative argument. The characteristic polynomial of the matrix A is

det(A − zI) = det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

−z 1 0 ⋯ 0 0
0 −z 1 ⋯ 0 0
0 0 −z ⋱ 0 0
⋮ ⋮ ⋮ ⋱ ⋱ ⋮

0 0 0 ⋯ −z 1
−a0 −a1 −a2 ⋯ −ar−2 −ar−1 − z

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

.

Expand this determinant along the bottom row.

The sign in front of the (−a0) term in the Laplace expansion is + if r is odd and − if r
is even, so we can write the first term of the expansion as

(−1)r−1(−a0) det

⎛

⎜
⎜
⎜
⎜
⎜
⎜

⎝

1 0 0 ⋯ 0
−z 1 0 ⋯ 0
0 −z 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟

⎠

+ terms 2 through r of the expansion.

The matrix we obtain in the expansion is lower-triangular once again, so its determinant
is equal to 1.

So, the first term of the Laplace expansion is equal to (−1)ra0.

Now, the sign of the second term of the expansion will be the opposite from that of
the first term. So we can continue the expansion as follows

(−1)ra0 + (−1)r(−a1) det

⎛

⎜
⎜
⎜
⎜
⎜
⎜

⎝

−z 0 0 ⋯ 0
0 1 0 ⋯ 0
0 −z 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟

⎠

+ terms 3 through r of the expansion.

By the same principle that the determinant of a lower-triangular matrix is the product
of its diagonal entries (or expanding continuously along the first row), we see that the
determinant of the matrix is −z. Therefore, the second term of the expansion is

(−1)r(−a1)(−z) = (−1)ra1z.

Doing one more term, we will have

(−1)r(a0+a1z)+(−1)
r−1

(−a2) det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

−z 1 0 0 ⋯ 0
0 −z 1 0 ⋯ 0
0 0 1 0 ⋯ 0
0 0 −z 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 ⋯ 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

+terms 4 through r of the expansion.

Expanding down along the columns with (−z)’s and then along rows with 1’s, we see
that the determinant of this matrix is (−z)(−z) ⋅ 1⋯1 = z2.
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This pattern will continue: the k + 1-st term of the Laplace expansion along the bottom
row will have (−z) in the diagonal entries of the first k columns (with 0’s below the (−z)
entry), and 1’s in the diagonal entries of the other columns (with 0’s to the right of the 1
entry). Therefore, the contribution of the k + 1-st term of the expansion will be (−1)rakzk,
except the last term will contribute (−1)r(ar−1 + z)zr−1 = (−1)r(ar−1zr−1 + zr).

Adding the terms of the expansion together, we obtain

(−1)r(a0 + a1z + a2z
2
+⋯ + ar−1z

r−1
+ zr) = (−1)rχ(z).

3. The Laplace transform method applies just as well to systems of differential equations.
Solve the first-order system

ẋ = x − 5y

ẏ = x − y
, x(0) = 1, y(0) = 0, (5)

as follows:

i) Take Laplace transforms of both expressions, obtaining a system of (algebraic) equa-
tions in L [x](s) and L [y](s).

ii) Solve the system of equations from part i) for L [x](s) and L [y](s).

iii) Take inverse Laplace transforms to obtain the solution t ↦ (x(t), y(t)) of the system
(5).

Solution. We follow the three steps above implicitly in this solution.
Taking Laplace transforms of both differential equations in the system (5), we obtain the

system of equations

L [ẋ](s) = L [x](s) − 5L [y](s)

L [ẏ](s) = L [x](s) −L [y](s).

The transforms of the derivatives of x and y become, using the initial conditions,

sL [x](s) − 1 = L [x](s) − 5L [y](s)

sL [y](s) − 0 = L [x](s) −L [y](s).

Let us introduce the (standard) notation L [x](s) = X(s) and L [y](s) = Y (s) (the capital
letters denote the transforms and the small letters denote the corresponding functions in the
t-domain). The system of equations written in this notation is

sX(s) − 1 =X(s) − 5Y (s)

sY (s) =X(s) − Y (s).

We can solve the second equation for Y (s) in terms of X(s):

(s + 1)Y (s) =X(s) so Y (s) =
X(s)

s + 1
.
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Then, plugging this into the first equation, we obtain

sX(s) − 1 =X(s) − 5
X(s)

s + 1
.

Rearranging,

((s − 1) +
5

s + 1
)X(s) = 1,

so that
s2 − 1 + 5

s + 1
X(s) = 1,

and so

X(s) =
s + 1

s2 + 4
=

s

s2 + 4
+

1

2

2

s2 + 4
.

Remembering the transforms cos(ωt) = s/(s2 + ω2
) and sin(ωt) = ω/(s2 + ω2

), we see that

x(t) = L −1
[

s

s2 + 4
] +L −1

[

1

2

2

s2 + 4
] = cos(2t) +

1

2
sin(2t).

Then,

Y (s) =
X(s)

s + 1
=

1

s2 + 4
=

1

2

2

s2 + 4
,

so that

y(t) =
1

2
sin(2t).

The solution trajectory satisfying the initial conditions is

t↦ (x(t), y(t)) = (cos(2t) +
1

2
sin(2t),

1

2
sin(2t)).

4. Let A = (
2 3
1 4

). Compute the matrix exponential exp(A).

Solution. We begin by computing the eigenvalues of A and their corresponding eigenspaces.
The characteristic polynomial of A factors as

det(A − zI) = det(
2 − z 3

1 4 − z
) = (2 − z)(4 − z) − 3 = z2 − 6z + 5 = (z − 1)(z − 5).

Therefore, the eigenvalues of A are λ1 = 1 and λ2 = 5. Since these are distinct, the matrix
will be diagonalizable.

To find an eigenvector corresponding to λ1 = 1, we try to solve

Av = 1 ⋅ v = v (v ≠ 0),

or, equivalently, find a nonzero vector such that

(A − I)v = 0.
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By definition, such a vector will lie in

ker(A − I).

We have

A − I = (
1 3
1 3

) .

The two rows impose the conditions
x + 3y = 0

on the coordinates of a vector v = (x, y) to be in the kernel of A − I (the second row is
redundant, being equal to the first row).

By inspection, we see that the vector

v1 = (
3
−1

)

lies in the kernel. We take v1 as the eigenvector spanning the eigenspace of λ1 (any nonzero
multiple of v1 would also work.)

Similarly, to find an eigenvector corresponding to λ2 = 5, we look in the kernel

kerA − 5I.

We have

A − 5I = (
−3 3
1 −1

) ,

so the condition for a vector to lie in the eigenspace corresponding to λ2 is

x − y = 0.

We see that we can take

v2 = (
1
1
)

as a vector spanning the eigenspace of λ2.
In the ordered basis {λ1, λ2}, the matrix A becomes

(
λ1 0
0 λ2

) = (
1 0
0 5

) .

Let

Q = (v1 v2) = (
3 1
−1 1

)

be the change of basis matrix from the eigenbasis to the original basis of A.
By the formula for the inverse of a 2 × 2 matrix (or otherwise),

Q−1
=

1

detQ
(
d −b
−c a

) =

1

4
(

1 −1
1 3

) .
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Then,

A = Q(
1 0
0 5

)Q−1,

and so

exp(A) = Q(
e 0
0 e5

)Q−1
= (

3 1
−1 1

)(
e 0
0 e5

)

1

4
(

1 −1
1 3

) =

1

4
(

3 1
−1 1

)(
e −e
e5 3e5

) =

1

4
(

3e + e5 −3e + 3e5

−e + e5 e + 3e5
) .
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