
Mthe 237 — Problem Set 08 Solutions

1. Solve the following equations using the Laplace transform method.

i)
dy

dt
− y = et, y(0) = 1.

ii)
d2y

dt2
+ 4

dy

dt
+ 4y = 0, y(0) = 1,

dy

dt
(0) = 1.

iii)
d2y

dt2
− 2

dy

dt
+ 5y = 0, y(0) = 2,

dy

dt
(0) = 4.

iv)
d3y

dt3
− 2

d2y

dt2
+ dy
dt

= 2et + 2t, y(0) = 0,
dy

dt
(0) = 0,

d2y

dt2
(0) = 0.

Optional Problem. Also solve the two equations from Problem Set 6 using the Laplace transform:

v)
d2y

dt2
+
dy

dt
− 2y = 2t, y(0) = 0,

dy

dt
(0) = 1.

vi)
d2y

dt2
+ 16y = t2 + sin(4t), y(0) =

127

128
,

dy

dt
(0) =

7

8
.

These will require more algebraic manipulations to get the expression for L [y](s) into a form where the
inverse transform can be found by inspection.

Solution. i) Taking Laplace transforms of both sides, we get

L [y′](s) −L [y](s) = L [et](s)

or

(sL [y](s) − y(0)) −L [y](s) = 1

s − 1
.

Using the initial condition y(0) = 1, and grouping like terms, we get

(s − 1)L [y](s) − 1 = 1

s − 1

so that, solving for L [y](s),

L [y](s) = 1

s − 1
+ 1

(s − 1)2 .

By inspection, the inverse Laplace transform is

y(t) = et + tet.

ii) Taking Laplace transforms of both sides, we get

L [y′′](s) + 4L [y′](s) + 4L [y](s) = 0

or
(s2L [y](s) − sy(0) − y′(0)) + 4 (sL [y](s) − y(0)) + 4L [y](s) = 0.
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Grouping like terms and applying the initial conditions, we get

(s2 + 4s + 4)L [y](s) − s − 5 = 0,

so that

L [y](s) = s + 5

s2 + 4s + 4
= s + 5

(s + 2)2 =
1

s + 2
+ 3

(s + 2)2 .

Taking the inverse Laplace transform by inspection, we find

y(t) = e−2t + 3t e−2t.

iii) Taking Laplace transforms of both sides, we get

L [y′′](s) − 2L [y′](s) + 5L [y](s) = 0,

or
(s2L [y](s) − sy(0) − y′(0)) − 2 (sL [y](s) − y(0)) + 5L [y](s) = 0.

Grouping like terms and applying the initial conditions, we have

(s2 − 2s + 5)L [y](s) − 2s = 0,

so that

L [y](s) = 2s

s2 − 2s + 5
= 2s

(s − 1)2 + 4
= 2(s − 1) + 2

(s − 1)2 + 4
= 2

s − 1

(s − 1)2 + 4
+ 2

(s − 1)2 + 4
.

Taking the inverse Laplace transform,

y(t) = 2et cos(2t) + et sin(2t).

Remark. It is also acceptable to do this problem by breaking up 1
s2−2s+5 into complex partial fractions,

although strictly speaking we have not defined the Laplace transform for complex-valued functions.
If one proceeds this way, however, after obtaining complex-valued exponentials in the t-domain, it is
necessary to apply Euler’s formula to the results to obtain real-valued solutions.

For the sake of illustration, here is how this approach would work for this problem. We have

2s

s2 − 2s + 5
=

2s

(s − (1 + 2i))(s − (1 − 2i))

=
A

s − (1 + 2i)
+

B

s − (1 − 2i)

=
A(s − (1 − 2i)) +B(s − (1 + 2i))

s2 − 2s + 5

Comparing coefficients of s and 1, we get the system of equations

A +B = 2

−A(1 − 2i) −B(1 + 2i) = 0
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Let’s solve it using matrix methods from linear algebra. We have

(
1 1 2

−1 + 2i −1 − 2i 0
)
R2⋅(−1−2i)
ÐÐÐÐÐÐ→ (

1 1 2
5 −3 + 4i 0

)

R2−5R1
ÐÐÐÐ→ (

1 1 2
0 −8 + 4i −10

)

R2⋅1/(−8+4i)
ÐÐÐÐÐÐÐ→ (

1 1 2
0 1 1 + i

2

) (
−10

−8 + 4i
=

−5

−4 + 2i
=

−5(−4 − 2i)

(−4 + 2i)(−4 − 2i)
=

20 + 10i

16 + 4
= 1 +

i

2
.)

R1−R2
ÐÐÐÐ→ (

1 0 1 − i
2

0 1 1 + i
2

) .

Therefore, A = 1 − i
2

and B = 1 + i
2
. We have

L [y](s) =
2s

s2 − 2s + 5
= (1 −

i

2
)

1

1 − (1 + 2i)
+ (1 +

i

2
)

1

1 − (1 − 2i)
.

Taking on faith that the inverse Laplace transform of 1
s−a is eat even when a is complex, we then have

y(t) = (1 −
i

2
) e(1+2i)t + (1 +

i

2
) e(1−2i)t

= (e(1+2i)t + e(1−2i)t) −
i

2
(e(1+2i)t − e(1−2i)t) .

By Euler’s formula,

eσ+iω + eσ−iω

2
= eσ cos(ω) and

eσ+iω − eσ−iω

2i
= eσ sin(ω).

Therefore, using the fact that i = − 1
i
,

y(t) = 2et cos(2t) + et sin(2t).

iv) Taking Laplace transforms of both sides, we get

L [y′′′](s) − 2L [y′′](s) +L [y′](s) = 2

s − 1
+ 2

s2
.

Since the initial conditions are all equal to zero, the left side is particularly simple:

s3L [y](s)−2s2L [y](s)+sL [y](s) = s(s2−2s+1)L [y](s) = s(s−1)2L [y](s) = 2

s − 1
+ 2

s2
.

Therefore,

L [y](s) = 2

s(s − 1)3 +
2

s3(s − 1)2 =
2s2 + 2(s − 1)
s3(s − 1)3 = 2s2 + 2s − 2

s3(s − 1)3 .

We find the partial fraction decomposition of the last term —

2s2 + 2s − 2

s3(s − 1)3
=
A

s
+
B

s2
+
C

s3
+

D

s − 1
+

E

(s − 1)2
+

F

(s − 1)3

=
As2(s − 1)3 +Bs(s − 1)3 +C(s − 1)3 +Ds3(s − 1)2 +Ds3(s − 1) +Es3

s3(s − 1)3

=
A(s5 − 3s4 + 3s3 − s2) +B(s4 − 3s3 + 3s2 − s) +C(s3 − 3s2 + 3s − 1) +D(s5 − 2s4 + s3) +E(s4 − s3) + Fs3

s3(s − 1)3

3



We get the system of linear equations

A +D = 0

−3A +B − 2D +E = 0

3A − 3B +C +D −E + F = 0

−A + 3B − 3C = 2

−B + 3C = 2

−C = −2

From the last equation, C = 2. From the fifth equation, then, B = 4. From the fourth
equation, A = 4. From the first equation, A = −D, so that D = −4. Then, from the
second equation, E = 0. Finally, from the third equation, F = 2.

Alternatively, bringing the coefficient matrix to rref,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 1 0 0 0
−3 1 0 −2 1 0 0
3 −3 1 1 −1 1 0
−1 3 −3 0 0 0 2
0 −1 3 0 0 0 2
0 0 −1 0 0 0 −2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

R2+3R1, R3−3R1,R4+R1
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 1 0 0 0
0 1 0 1 1 0 0
0 −3 1 −2 −1 1 0
0 3 −3 1 0 0 2
0 −1 3 0 0 0 2
0 0 −1 0 0 0 −2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

R3+3R2, R4−3R2, R5+R2
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 1 0 0 0
0 1 0 1 1 0 0
0 0 1 1 2 1 0
0 0 −3 −2 −3 0 2
0 0 3 1 1 0 2
0 0 −1 0 0 0 −2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

R4+3R3, R6−3R3, R6+R3
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 1 0 0 0
0 1 0 1 1 0 0
0 0 1 1 2 1 0
0 0 0 1 3 3 2
0 0 0 −2 −5 −3 2
0 0 0 1 2 1 −2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

R5+2R4, R6−R4
ÐÐÐÐÐÐÐÐÐ→

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 1 0 0 0
0 1 0 1 1 0 0
0 0 1 1 2 1 0
0 0 0 1 3 3 2
0 0 0 0 1 3 6
0 0 0 0 −1 −2 −4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

R6+R5
ÐÐÐÐ→

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 1 0 0 0
0 1 0 1 1 0 0
0 0 1 1 2 1 0
0 0 0 1 3 3 2
0 0 0 0 1 3 6
0 0 0 0 0 1 2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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R3−R6, R4−3R6,R5−3R6
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 1 0 0 0
0 1 0 1 1 0 0
0 0 1 1 2 0 −2
0 0 0 1 3 0 −4
0 0 0 0 1 0 0
0 0 0 0 0 1 2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

R2−R5, R3−2R5, R4−3R5
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 1 0 0 0
0 1 0 1 0 0 0
0 0 1 1 0 0 −2
0 0 0 1 0 0 −4
0 0 0 0 1 0 0
0 0 0 0 0 1 2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

R1−R4, R2−R4, R3−R4
ÐÐÐÐÐÐÐÐÐÐÐÐÐ→

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 4
0 1 0 0 0 0 4
0 0 1 0 0 0 2
0 0 0 1 0 0 −4
0 0 0 0 1 0 0
0 0 0 0 0 1 2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Therefore,
2s2 + 2s − 2

s3(s − 1)3 = 4

s
+ 4

s2
+ 2

s3
− 4

s − 1
+ 2

(s − 1)3 .

Taking the inverse Laplace transform,

y(t) = 4 + 4t + t2 − 4et + t2et.

v) Taking Laplace transforms of both sides,

L [y′′](s) +L [y′](s) − 2L [y](s) =
2

s2
,

or

(s2L [y](s) − sy(0) − y′(0)) + (sL [y](s) − y(0)) − 2L [y](s) =
2

s2
.

Applying the initial conditions y(0) = 0, y′(0) = 1,

(s2 + s − 2)L [y](s) − 1 =
2

s2
,

so that

L [y](s) =
1

s2 + s − 2
+

2

s2(s2 + s − 2)
=

1

(s − 1)(s + 2)
+

2

s2(s − 1)(s + 2)
=

s2 + 2

s2(s − 1)(s + 2)
.

We find the partial fraction decomposition of the last term —

s2 + 2

s2(s − 1)(s + 2)
=
A

s
+
B

s2
+

C

s − 1
+

D

s + 2

=
As(s2 + s − 2) +B(s2 + s − 2) +Cs2(s + 2) +Ds2(s − 1)

s2(s − 1)(s + 2)

=
A(s3 + s2 − 2s) +B(s2 + s − 2) +C(s3 + 2s2) +D(s3 − s2)

s2(s − 1)(s + 2)
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We get the system of linear equations

A +C +D = 0

A +B + 2C −D = 1

−2A +B = 0

−2B = 2

From the last equation, B = −1. Then, from the third, A = −1/2. Adding the first two, 2A+B+3C = 1,
so C = 1. Finally, from the first, D = −1/2.

s2 + 2

s2(s − 1)(s + 2)
= −

1

2

1

s
−

1

s2
+

1

s − 1
−

1

2

1

s + 2
.

Taking the inverse Laplace transform,

y(t) = −
1

2
− t + et −

1

2
e−2t.

vi) Taking Laplace transforms of both sides,

L [y′′](s) + 16L [y](s) =
2

s3
+

4

s2 + 16
,

or

(s2 + 16)L [y](s) −
127s

128
−

7

8
=

2

s3
+

4

s2 + 16
.

So

L [y](s) =
7

8

1

s2 + 16
+

127

128

s

s2 + 16
+

2

s3(s2 + 16)
+

4

(s2 + 16)2
.

We find the partial fraction decomposition of the third term —

2

s3(s2 + 16)
=
A

s
+
B

s2
+
C

s3
+
Ds +E

s2 + 16

=
As2(s2 + 16) +Bs(s2 + 16) +C(s2 + 16) +Ds4 +Es3

s3(s2 + 16)

=
A(s4 + 16s2) +B(s3 + 16s) +C(s2 + 16) +Ds4 +Es3

s3(s2 + 16)
.

The solution is A = −1/128, B = 0, C = 1/8, D = 1/128, E = 0. We get (after rearranging slightly)

L [y](s) = −
1

128

1

s
+

1

8

1

s3
+

s

s2 + 16
+

7

8

1

s2 + 16
+

4

(s2 + 16)2
.

Because of the term 1
(s2+16)2 , we recognize some transforms of functions of type t cos and t sin. We

have (from Problem 2)

L [t cos(ωt)](s) =
s2 − ω2

(s2 + ω2)2
and L [t sin(ωt)](s) =

2ωs

(s2 + ω2)2
.

We would like to bring this expression to the form where we can recognize the transforms by inspection.
One trick that works is to write

7

8

1

s2 + 16
=

1

s2 + 16
−

1

8

1

s2 + 16
=

1

s2 + 16
−

1

8

s2 + 16

(s2 + 16)2
.

Then

−
1

8

s2 + 16

(s2 + 16)2
+

4

(s2 + 16)2
= −

1

8

s2 − 16

(s2 + 16)2
(!).
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So that

sL[y](s) = −
1

128

1

s
+

1

16

2

s3
+

s

s2 + 16
+

1

s2 + 16
−

1

8

s2 − 16

(s2 + 16)2

and

y(t) = −
1

128
+

1

16
t2 + cos(4t) +

1

4
sin(4t) −

1

8
t cos(4t),

in agreement with the solution found in Problem Set 06.

2. i) Show that ∫
∞

0 f(t)e−st dt converges for s = s0 − σ if and only if ∫
∞

0 (eσtf(t)) e−st dt
converges for s = s0.
Hence, show that if the domain of L [f] is all s > a, then the domain of L [eσtf] is all
s > a + σ, and we have

L [eσtf](s) = L [f](s − σ) for all s > a + σ.

ii) Taking the four transforms

L [cos(ωt)](s) = s

s2 + ω2
, s > 0, L [sin(ωt)](s) = ω

s2 + ω2
, s > 0,

L [t cos(ωt)](s) = s2 − ω2

(s2 + ω2)2 , s > 0 and L [t sin(ωt)](s) = 2ωs

(s2 + ω2)2 , s > 0

as known, find

L [eσt cos(ωt)], L [teσt cos(ωt)], L [eσt sin(ωt)] and L [teσt cos(ωt)].

Solution. i) We have

∫
∞

0
(eσtf(t))e−st dt = ∫

∞

0
f(t)e−(s−σ)t dt.

Therefore, ∫
∞

0 f(t)e−(s0−σ)t dt converges if and only if ∫
∞

0 (eσtf(t))e−s0t dt converges.
They are the same integral!

Now, observe that this implies that ∫
∞

0 f(t) e−st dt converges for s = s0 if and only if

∫
∞

0 (eσtf(t)) e−st dt converges for s = s0 + σ.

Suppose that the domain of L [f] is all s > a, for some a (the other possibilities for
the domain — s ≥ a and the empty set, can be handled similarly). This means that

∫
∞

0 f(t) e−st dt converges if and only if s > a, by definition of the domain of L [f]. By
the observation of the previous paragraph, it follows that ∫

∞

0 (eσtf(t)) e−st dt converges
if and only if s > a + σ. Therefore, the domain of L [eσtf] is all s > a + σ.

We have, using the definition of Laplace transform,

L [eσtf](s) = ∫
∞

0
(eσtf(t)) e−st dt

= ∫
∞

0
f(t)e−(s−σ)t dt

= L [f](s − σ) for all s > a + σ

7



ii) Applying the first part, we have

L [eσt cos(ωt)](s) = L [cos(ωt)](s − σ) = (s − σ)
(s − σ)2 + ω2

, s > σ;

L [t eσt cos(ωt)](s) = L [t cos(ωt)](s − σ) = (s − σ)2 − ω2

((s − σ)2 + ω2)2 , s > σ;

L [eσt sin(ωt)](s) = L [sin(ωt)](s − σ) = ω

(s − σ)2 + ω2
, s > σ;

L [t eσt sin(ωt)](s) = L [t sin(ωt)](s − σ) = 2ω(s − σ)
((s − σ)2 + ω2)2 , s > σ.

3. As a reminder, earlier in the term we defined the functions

cosh(ωt) = e
ωt + e−ωt

2
and sinh(ωt) = e

ωt − e−ωt
2

, t ∈ R.

Find expressions for L [cosh(ωt)] and L [sinh(ωt)] in the following two ways:

i) Take as known the transform

L [eσt](s) = 1

s − σ , s > 0,

and use linearity of L .

ii) Check that

cosh(0) = 1,
d

dt
cosh(ωt)∣

t=0

= 0,

and

sinh(0) = 0,
d

dt
sinh(ωt)∣

t=0

= ω.

Then, find a linear homogeneous differential equation with constant coefficients that
has cosh and sinh as solutions, apply L to both sides of the differential equation, and
use the initial conditions found above.

(Although you do not have to show this, the domain of both L [cosh(ωt)] and L [sinh(ωt)] is equal to
s > ∣ω∣, as may be tempting to guess from the domains of eωt and e−ωt.)
Optional Problem. Compute L [cosh(ωt)] and L [sinh(ωt)] from the definition, and verify the claim just
made about their domains.

Solution. i) By linearity of the Laplace transform, we have

L [cosh(ωt)](s) = 1

2
L [eωt](s) + 1

2
L [e−ωt](s)

= 1

2

1

s − ω + 1

2

1

s + ω
= 1

2

(s + ω) + (s − ω)
s2 − ω2

= s

s2 − ω2
,
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for all s > max(ω,−ω) (since the domains of L [eωt] and L [e−ωt] are s > ω and s > −ω,
respectively), and

L [sinh(ωt)](s) = 1

2
L [eωt](s) − 1

2
L [e−ωt](s)

= 1

2

1

s − ω − 1

2

1

s + ω
= 1

2

(s + ω) − (s − ω)
s2 − ω2

= ω

s2 − ω2
,

for all s > max(ω,−ω).
Remarks. The domains of L [cosh(ωt)] and L [sinh(ωt)] could be larger than the regions where we
can apply the linearity properties of L , but in this example it turns out that they are not.

It is worth noticing how similar these expressions are to the Laplace transforms of cos and sin.

ii) Since cosh(ωt) and sinh(ωt) are linear combinations of eωt and e−ωt, they are in fact
quasipolynomials! The problem of finding an equation for cosh and sinh is equivalent
to finding an annihilator of cosh and sinh, and we have previously (in Problem Set
06) developed some methods on how to find annihilators of linear combinations of
functions.

The operator ( d
dt − ω) is an annihilator of eωt, and ( d

dt + ω) is an annihilator of e−ωt.
Therefore, the operator product

( d
dt
− ω)( d

dt
+ ω) = d2

dt2
− ω2

is an annihilator of any linear combination of eωt and e−ωt. In particular, it is an anni-
hilator of both cosh(ωt) and sinh(ωt). Therefore, cosh(ωt) and sinh(ωt) are solutions
of the differential equation

d2y

dt2
− ω2y = 0. (1)

Applying the Laplace transform to both sides of this equation, we get

L [d
2y

dt2
](s) − ω2L [y](s) = 0.

Therefore,
s2L [y](s) − sy(0) − y′(0) − ω2L [y](s) = 0,

so that
(s2 − ω2)L [y](s) = sy(0) + y′(0).

Finally,

L [y](s) = sy(0) + y
′(0)

s2 − ω2
, (2)

for any solution y of (1).
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Computing the derivatives of cosh(ωt) and sinh(ωt), we have

(cosh(ωt))′ = (e
ωt + e−ωt

2
)
′

= ωe
ωt − ωe−ωt

2
= ω (e

ωt − e−ωt
2

) = ω sinh(ωt),

and

(sinh(ωt))′ = (e
ωt − e−ωt

2
)
′

= ωe
ωt + ωe−ωt

2
= ω cosh(ωt).

Moreover, cosh(0) = e0+e0

2 = 1 and sinh(0) = e0−e0

2 = 0, so that

cosh(0) = 1,
d

dt
cosh(ωt)∣

t=0

= ω sinh(0) = 0,

and

sinh(0) = 0,
d

dt
sinh(ωt)∣

t=0

= ω cosh(0) = ω.

Finally, using result (2) with these initial conditions, we see that the Laplace transforms
of cosh(ωt) and sinh(ωt) are

L [cosh(ωt)](s) = s ⋅ 1 + 0

s2 − ω2
= s

s2 − ω2

and

L [sinh(ωt)](s) = s ⋅ 0 + ω
s2 − ω2

= ω

s2 − ω2
.

4. Let f and g denote the following two functions.

f(t) =
⎧⎪⎪⎨⎪⎪⎩

1 0 ≤ t ≤ 1

0 otherwise

and

g(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t 0 ≤ t ≤ 1

2 − t 1 ≤ t ≤ 2

0 otherwise

i) Show that the convolution f ∗f of f with itself is equal to g, in the following two ways.

First, compute f ∗ f using the definition of convolution

(f ∗ f)(t) = ∫
∞

−∞

f(u)f(t − u)du

and check that the result is equal to g.

Second, write both f and g as an expression involving step functions, and apply the
property L [f ∗ f] = L [f]L [f] of the Laplace transform.

10



ii) Compute the convolution (2f) ∗ g of 2f with g in the same two ways as part i).

Optional Problem. Investigate the motion of a simple harmonic oscillator starting from rest

d2y

dt2
+ y = F (t), y(0) = 0,

dy

dt
(0) = 0,

subject to forcing functions f(t), g(t) and ((2f) ∗ g)(t).

Solution. i) The computation breaks up into a number of cases based on the intersection
of the graph of f(u) with the graph of f(t − u). We can think of the latter as the
graph of f , but reflected about the y-axis, and translated by t to the right (or, more
generally, translated by t along the positive u-direction).

We adopt the convention that the fixed graph of f(u) is in black, and the sliding graph
of f(t − u) is in blue. When the two graphs overlap along a line segment, we shall
denote the overlap in orange. Moreover, we omit the graphs of both where they are
equal to zero.

Case t < 0: The regions where f(u) and f(t−u) are nonzero do not overlap. Therefore,
their product f(u)f(t − u) is equal to 0 for all u, and

u (f ∗ f)(t) = ∫
∞

−∞

0du = 0.

Case 0 ≤ t < 1: The tip of f(t − u) crosses over into the region where f(u) is nonzero.

u

u = tu = 0

(f ∗ f)(t) = ∫
t

0
f(u)f(t − u)du = ∫

t

0
1du = u∣u=tu=0 = t.

Case 1 ≤ t < 2: The tip of f(t − u) passes the region where f(u) is nonzero, but the
tail of f(t − u) still overlaps the region.

u

u = t − 1 u = 1

(f ∗ f)(t) = ∫
1

t−1
f(u)f(t − u)du = ∫

1

t−1
1du = u∣u=1u=t−1 = 1 − (t − 1) = 2 − t.
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Case t ≥ 2: The graph of f(t− u) completely passes the region where f(u) is nonzero,
so the product f(u)f(t − u) is again zero.

u (f ∗ f)(t) = 0.

In summary,

(f ∗ f)(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t 0 ≤ t ≤ 1

2 − t 1 ≤ t ≤ 2

0 otherwise

,

so that (f ∗ f)(t) = g(t) for all t ∈ R.

Writing f using unit step functions, we have

f(t) = u0(t) − u1(t) for all t.

Therefore,

L [f](s) = e
−0s

s
− e

−1s

s
= 1

s
− e

−s

s
.

By the convolution theorem,

L [f ∗ f](s) = L [f](s)L [f](s) = (1

s
− e

−s

s
)
2

= 1

s2
− 2

s2
e−s + 1

s2
e−2s.

We can find the inverse Laplace transform using the property that if Y (s) = L [y](s),
then L −1[e−asY ] = ua(t)y(t − a). Remembering that L −1[ 1

s2 ] = t, we have

(f ∗ f)(t) = u0(t)t − 2u1(t)(t − 1) + u2(t)(t − 2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 t < 0

t 0 ≤ t < 1

t − 2(t − 1) = 2 − t 1 < t ≤ 2

(2 − t) + (t − 2) = 0 t > 2

which once again recovers g(t) for all t ∈ R.

ii) By a property proved in class, (2f ∗ g) = (g ∗ 2f). We compute the second instead,
because it is somewhat simpler to imagine sliding a horizontal line segment. We proceed
as in part i), with the same conventions.

Case t < 0: The regions where g(u) and 2f(t−u) are nonzero do not overlap. Therefore,
their product g(u)2f(t − u) is equal to 0 for all u, and
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u (g ∗ 2f)(t) = ∫
∞

−∞

0du = 0.

Case 0 ≤ t < 1: The tip of the segment 2f(t − u) overlaps the region where g(u) is
nonzero.

u

u = tu = 0

(g ∗ 2f)(t) = ∫
t

0
g(u)2f(t − u)du = ∫

t

0
2udu = u2∣u=t

u=0
= t2.

Case 1 ≤ t < 2: The entire segment 2f(t−u) overlaps the region where g(u) is nonzero.

u

u = tu = t − 1

(g ∗ 2f)(t) = ∫
t

t−1
g(u)2f(t − u)du = ∫

1

t−1
2udu + ∫

t

1
2(2 − u)du

= u2∣u=1
u=t−1

+ (4u − u2)∣u=t
u=1

= 1 − (t − 1)2 + (4t − t2) − (4 − 1)
= −2t2 + 6t − 3

= −2(t − 3

2
)
2

+ 15

2
.

Case 2 ≤ t < 3: The tail of the segment 2f(t − u) overlaps the region where g(u) is
nonzero.
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u

u = 2u = t − 1

(g∗2f)(t) = ∫
2

t−1
g(u)2f(t−u)du = ∫

2

t−1
2(2−u)du = (4u − u2)∣u=2

u=t−1
= t2−6t+9 = (t−3)2.

Case t ≥ 3: The tail of the segment 2f(t − u) passes the region where g(u) is nonzero.

u

u > 2

(g ∗ 2f)(t) = 0.

In summary,

(g ∗ 2f)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

t2 0 ≤ t < 1

−2t2 + 6t − 3 1 ≤ t < 2

t2 − 6t + 9 2 ≤ t < 3

0 otherwise

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

t2 0 ≤ t < 1

−2 (t − 3
2
)2 + 15

2 1 ≤ t < 2

(t − 3)2 2 ≤ t < 3

0 otherwise

.

The graph of (g ∗ 2f) is a nice union of three parabolas. The function (g ∗ 2f), which
we can think of as f ∗ f ∗ f (up to multiplying by 2), is now differentiable (whereas f
was discontinuous, and f ∗ f was merely continuous).

t

f

t

f ∗ f

t

f ∗ f ∗ f
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Finally, we know from the previous part that

L [g](s) = 1

s2
(1 − 2e−s + e−2s) .

By the convolution theorem,

L [g ∗ 2f](s) = L [g](s)L [2f](s) = 1

s2
(1 − 2e−s + e−2s)2(1

s
− e

−s

s
)

= 2

s3
(1 − 3e−s + 3e−2s − e−3s) .

By the translation theorem (recalling that L [t2](s) = 2/s3), we conclude that

(g ∗ 2f)(t) = u0(t)t2 − 3u1(t)(t − 1)2 + 3u2(t)(t − 2)2 − u3(t)(t − 3)2.

Writing out the pieces,

(g ∗ 2f)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 t < 0

t2 0 ≤ t < 1

t2 − 3(t − 1)2 = −2t2 + 6t − 3 1 ≤ t < 2

(−2t2 + 6t − 3) + 3(t − 2)2 = t2 − 6t + 9 2 ≤ t < 3

(t2 − 6t + 9) − (t − 3)2 = 0 t ≥ 3

.

This is the same answer as before!
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