
Mthe 237 — Problem Set 07 Solutions

1. Solve the following equations using the method of variation of parameters.

i)
dy

dt
− 2t

t2 + 1
y = 1, y(0) = 0. (The integral ∫

ds
s2+1 = arctan(s) +C may be useful.)

ii)
d2y

dt2
+ 2

dy

dt
+ y = e

−t

t
, t > 0 y(1) = 0,

dy

dt
(1) = −e−1.

iii) 2t2
d2y

dt2
+ 3t

dy

dt
− y = 1

t
, t > 0, y(1) = 0,

dy

dt
(1) = 11

6
,

given that φ1 = t1/2 and φ2 = t−1 are solutions of the associated homogeneous equation.

Solution. i) To use variation of parameters to find a solution, we first need to find a
(nonzero) solution of the associated homogeneous equation

dy

dt
− 2t

t2 + 1
y = 0.

As are all linear homogeneous equations of first order, the equation is separable. Sep-
arating variables, we obtain

1

y

dy

dt
= 2t

t2 + 1
.

Integrating both sides, we get

ln(∣y∣) = ln(t2 + 1) +C.

For the purposes of separation of variables, it is enough to find a single nonzero solution,
so we may as well take C = 0, and choose the positive branch of the absolute value:

φ(t) = t2 + 1.

Next, by the separation of variables method, we need to find a function u whose
derivative u′ satisfies the linear equation

φu′ = F = 1.

Dividing both sides by φ, we obtain

du

dt
= 1

t2 + 1
,

so that, integrating with respect to t,

u(t) = ∫
dt

t2 + 1
= arctan(t).

(We may omit the arbitrary constant, since we are looking for any particular solution
at the moment.) A particular solution produced by separation of variables is then

φp(t) = φu = (t2 + 1)arctan(t).
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The affine space of all solutions is

(t2 + 1)arctan(t) + b (t2 + 1), b ∈ R.

Imposing the initial condition y(0) = 0, we see

(02 + 1)arctan(0) + b (1) = 0,

so that
b = 0

and the solution satisfying the initial condition y(0) = 0 is

(t2 + 1)arctan(t), t ∈ R.

ii) We begin by finding two linearly independent solutions of the associated homogeneous
equation

d2y

dt2
+ 2

dy

dt
+ y = 0.

This has characteristic polynomial χ(z) = z2 + 2z + 1 = (z + 1)2. The characteristic
polynomial has a double root at z = −1, so we can take

φ1(t) = e−t, φ2(t) = te−t

as the two linearly independent solutions.

The Wronskian of φ1, φ2 is

W (φ1, φ2)(t) = det( e
−t te−t

−e−t (1 − t)e−t) = (1 − t)e−2t − (−te−2t) = e−2t.

Following variation of parameters, we now look for functions u1, u2 whose derivatives
satisfy the linear system of equations

(φ1 φ2

φ′1 φ′2
)(u

′
1

u′2
) = ( 0

e−t/t) .

This system can be solved in a number of different ways. Here we use Cramer’s rule.
We have

u′1 =
det( 0 te−t

e−t/t (1 − t)e−t)

W (φ1, φ2)(t)
= −e

−2t

e−2t
= −1,

and

u′2 =
det( e

−t 0
−e−t e−t/t)

W (φ1, φ2)(t)
= e

−2t/t
e−2t

= 1

t
,

so that
u1(t) = ∫ −1dt = −t
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and

u2(t) = ∫
dt

t
= ln(t)

(we have omitted the absolute value on t because the domain of the equation was
restricted to t > 0 in the problem statement).

The affine space of all solutions is then

−te−t + t ln(t)e−t + b1 e−t + b2 te−t, b1, b2 ∈ R.

We can absorb the first term −te−t of the particular solution into the homogeneous
piece b2 t e−t, so that the affine space of solutions is

t ln(t)e−t + b1 e−t + b2 te−t, b1, b2 ∈ R.

The derivative of such a solution is

(ln(t)e−t + e−t − t ln(t)e−t) − b1e−t + b2 e−t − b2 te−t.

Imposing the initial conditions y(1) = 0, dy
dt = −e−1, we obtain

0 + (b1 + b2)e−1 = 0,

(0 + e−1 + 0) + (−b1 + b2 − b2)e−1 = −e−1,

or

b1 + b2 = 0,

−b1 = −2.

This has solutions b1 = 2, b2 = −2. Therefore, the solution to the differential equation
satisfying the initial conditions is

t ln(t)e−t + 2e−t − 2te−t, t > 0.

iii) We begin by bringing the equation to standard form (with coefficient 1 in front of the
highest derivative) —

d2y

dt2
+ 3

2t

dy

dt
− 1

2t2
y = 1

2t3
, t > 0.

We are provided with the solutions φ1(t) = t1/2 and φ2(t) = t−1 of the associated
homogeneous equation.

We can check that these in fact are solutions of the associated homogeneous equation —

φ′1 =
1

2
t−1/2, φ′′1 = −

1

4
t−3/2,

so

φ′′1 +
3

2t
φ′1 −

1

2t2
φ1 = −

1

4
t−3/2 +

3

2t

1

2
t−1/2 −

1

2t2
t1/2 = (−

1

4
+
3

4
−
1

2
) t−3/2 = 0,

and
φ′2 = −t

−2, φ′′2 = 2t−3,
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so

φ′′2 +
3

2t
φ′2 −

1

2t2
φ2 = 2t−3 +

3

2t
(−t−2) −

1

2t2
t−1 = (2 −

3

2
−
1

2
) t−3 = 0.

The Wronskian of φ1 and φ2 is

W (φ1, φ2)(t) = det( t1/2 t−1
1
2t
−1/2 −t−2) = −t−3/2 − 1

2
t−3/2 = −3

2
t−3/2.

Following variation of parameters, we look for functions u1, u2 whose derivatives satisfy
the linear system

(φ1 φ2

φ′1 φ′2
)(u

′
1

u′2
) = ( 0

1/(2t3)) .

We use Cramer’s rule.

u′1 =
det( 0 t−1

1
2t3 −t−2

)

W (φ1, φ2)(t)
=
−1

2t
−4

−3
2t
−3/2 =

1

3
t−5/2

and

u′2 =
det( t1/2 0

1
2t
−1/2 1

2t3
)

−3
2t
−3/2 =

1
2t
−5/2

−3
2t
−3/2 = −

1

3
t−1.

Therefore,

u1(t) = ∫
1

3
t−5/2 dt = −2

9
t−3/2

and

u2(t) = ∫ −
1

3

dt

t
= −1

3
ln(t).

The affine space of all solutions is

−2

9
t−1 − 1

3
t−1 ln(t) + b1 t1/2 + b2 t−1, b1, b2 ∈ R.

We can absorb the term −2/9t−1 of the particular solution into b2, so that the affine space of
all solutions is

−1

3
t−1 ln(t) + b1t1/2 + b2t−1, b1, b2 ∈ R.

A derivative of such a solution is

1

3
t−2 ln(t) − 1

3
t−2 + b1

2
t−1/2 − b2t−2.

Imposing the initial conditions y(1) = 0, dy
dt (1) = 11

6 , we get

0 + b1 + b2 = 0,

0 − 1

3
+ b1

2
− b2 =

11

6
,

which is solved to get b1 = 13/9, b2 = −13/9.
The solution of the differential equation satisfying the initial conditions is

−1

3
t−1 ln(t) + 13

9
t1/2 − 13

9
t−1, t > 0.
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2. A first-order differential equation of the form

dy

dt
+ a(t)y = F (t)yk, k ≠ 0, 1 real, y ≠ 0 (1)

is called a Bernoulli equation.
Although Bernoulli equations are nonlinear (unless k = 0 or k = 1, which is the reason for

excluding these exponents), they can always be converted to linear equations by a change of
variable.

i) Let y(t) be a solution of the Bernoulli equation (1). Let v(t) = y(t)1−k. Show that
1

1−k
dv
dt = y−k

dy
dt . Then, show that v(t) is a solution of the differential equation

dv

dt
+ (1 − k)a(t)v = (1 − k)F (t), (2)

which is now linear.

(Conversely, one can similarly show that if v(t) is a solution of (2), then y(t) = v(t)1/(1−k) is a solution

of (1).)

ii) Solve the equation

dy

dt
= εy − σy3, ε > 0, σ > 0, y(0) =

√
2ε/σ

by recognizing it as a Bernoulli equation and making the above change of variable.

iii) Solve the equation
dy

dt
+ y = ty3, y(0) = 1.

Solution. i) Differentiating v(t) = y(t)1−k with respect to t, we get

dv

dt
= (1 − k)y−k dy

dt

by the chain rule. Dividing both sides by (1 − k) shows the first claim.

Now, dividing the Bernoulli equation (1) by yk, we get

y−k
dy

dt
+ a(t)y1−k = F (t),

which, rewritten in terms of v, is

1

1 − k
dv

dt
+ a(t)v = F (t).

Finally, multiplying both sides by (1 − k) to put the equation into standard form, we
get

dv

dt
+ (1 − k)a(t)v = (1 − k)F (t).
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ii) The equation of y is
dy

dt
− εy = −σy3,

so that by part i), the function v(t) = y(t)1−3 = 1
y2 is a solution of

dv

dt
+ 2εv = 2σ.

This is linear, and in fact has constant coefficients. The associated homogeneous
equation is

dv

dt
+ 2εv = 0.

The characteristic polynomial is χ(z) = z + 2ε, which has a single real root at z = −2ε,
so a nonzero solution of the associated homogeneous equation is φ(t) = e−2εt.
Now, following variation of parameters, we look for a function u whose derivative
satisfies

u′ = F
φ
= 2σ

e−2εt
= 2σe2εt.

Integrating, we find

u(t) = ∫ 2σe2εt dt = σ
ε
e2εt.

Therefore, the affine space of all solutions is

v(t) = σ
ε
e2εte−2εt + b e−2εt = σ

ε
+ b e−2εt, b ∈ R.

The induced initial condition on v is

v(0) = 1

y(0)2 =
1

2ε/σ = σ

2ε
.

We find b:
σ

ε
+ b = σ

2ε
,

so b = − σ2ε . The solution satisfying the initial condition is

v(t) = σ
ε
(1 − e

−2εt

2
) .

Finally, converting the solution back to y, y(t) = v(t)−1/2 (we take the positive square
root to match the initial condition), so

y(t) = [σ
ε
(1 − e

−2εt

2
)]

−1/2
.

We can determine the domain of the solution: because we require the solution to be real-valued (and
can’t divide by 0), the argument of the square root must be positive. This happens if and only if

1 −
e−2εt

2
> 0 or t > −

ln(2)

2ε
.
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iii) The equation of y is
dy

dt
+ y = ty3,

so that v(t) = 1/y(t)2 is a solution of

dv

dt
− 2v = −2t.

The corresponding homogeneous equation for v is

dv

dt
− 2v = 0,

which has characteristic polynomial χ(z) = z − 2, with a real root at z = 2. Therefore,
we can take φ = e2t as a nonzero solution of the associated homogeneous equation.

Following variation of parameters, we now look for u whose derivative satisfies

u′ = −2t
e2t

= −2te−2t.

Integrating by parts, we have

u(t) = ∫ −2te−2t dt = te−2t − ∫ e−2t dt = te−2t + 1

2
e−2t,

so that the affine space of all solutions is

v(t) = u(t)φ(t) + bφ(t) = t + 1

2
+ b e2t b ∈ R.

The induced initial condition on v is v(0) = 1/y(0)2 = 1, so

0 + 1

2
+ b = 1, and b = 1

2
.

The solution in terms of v is

v(t) = t + 1

2
(1 + e2t).

Converting back to y, we have

y(t) = 1√
t + 1

2(1 + e2t)

The domain of the solution is all t that satisfy

t +
1

2
(1 + e2t) > 0 or 2t + 1 + e2t > 0.

This expression goes to −∞ as t→ −∞ and ∞ as t→∞, so it has at least one zero by the intermediate

value theorem. Moreover, its derivative is 2 + 2e2t, which is positive for all t, so that the zero of

2t + 1 + e2t is unique. Let ξ be this zero. Then the domain is t > ξ. Since −2 + 1 + e−2t < 0 and

0 + 1 + e0 > 0, we know that −1 < ξ < 0, for instance. Using Newton’s method, for example, we can

estimate that ξ ≈ −0.639.
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3. In this problem, we look at resonance in a simple harmonic oscillator.
Consider an undamped spring with spring constant k hanging vertically, with one end

fixed and the other end attached to a mass m. As derived in Problem Set 04, the equation
of motion of the mass about its rest point is

d2y

dt2
+ ω2

0y = 0,

where ω0 is the frequency of the two solutions, cos(ω0t) and sin(ω0t), called the natural
frequency of the oscillator.

Suppose that we introduce an oscillating driving force F (t) = mF0 cos(ωt), with ampli-
tude (mF0) and frequency ω. The equation of motion then becomes

d2y

dt2
+ ω2

0y = F0 cos(ωt). (3)

Suppose that ω = ω0, so that the frequency of the driving force exactly matches the natural
frequency of the oscillator.

i) Show that the set of solutions of equation (3) is equal to

{ F0

2ω0

t sin(ω0t) + b1 cos(ω0t) + b2 sin(ω0t) ∶ b1, b2 ∈ R} .

ii) Suppose that the oscillator starts at rest, so that we have the initial conditions

y(0) = 0,
dy

dt
(0) = 0.

Find the solution of equation (3) satisfying these initial conditions and sketch the graph
of the solution for t > 0.

iii) Suppose that the initial conditions are instead

y(0) = 0,
dy

dt
(0) = 10ω0.

Find the solution of equation (3) satisfying these initial conditions and sketch the graph
of the solution for t > 0.

Solution. i) We use the method of undetermined coefficients. Because ω = ω0 by hypoth-
esis, we write ω instead of ω0 throughout for simplicity.

The function q(t) = F0 cos(ωt) is contained in the span of {cos(ωt), sin(ωt)}, which is
the space of solutions of the linear homogeneous equation

( d
dt
− iω)( d

dt
+ iω) y = 0.

Therefore, we can take

pq (
d

dt
) = ( d

dt
− iω)( d

dt
+ iω)
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as our annihilator.

Factoring the operator in the original equation, the equation we are to solve is

( d
dt
− iω0)( d

dt
+ iω0) y = F0 cos(ωt),

and applying the annihilator pq ( ddt) to both sides (and remembering that ω0 = ω by
hypothesis) converts this to the homogeneous equation

[( d
dt
− iω)( d

dt
+ iω)]

2

y = 0.

The basis of solutions of the new equation is

{cos(ωt), t cos(ωt), sin(ωt), t sin(ωt)}.

Following the method of undetermined coefficients, we look for a particular solution of
the form

φp = b1t cos(ωt) + b2t sin(ωt)
(disregarding the solutions of the associated homogeneous equation for the moment).

Differentiating, we have

φ′p = b1(cos(ωt) − ωt sin(ωt)) + b2(sin(ωt) + ωt cos(ωt))
= b1 cos(ωt) + b2 sin(ωt) + ωb2t cos(ωt) − ωb1t sin(ωt)

and

φ′′p = −ωb1 sin(ωt) + ωb2 cos(ωt) + ωb2 cos(ωt) − ω2b2t sin(ωt) − ωb1 sin(ωt) − ω2b1t cos(ωt)
= 2ωb2 cos(ωt) − 2ωb1 sin(ωt) − ω2b1t cos(ωt) − ω2b2t sin(ωt).

We want φp to satisfy φ′′p + ωφp = F0 cos(ωt). Adding,

φ′′p + ω2φp

= 2ωb2 cos(ωt) − 2ωb1 sin(ωt) − ω2b1t cos(ωt) − ω2b2t sin(ωt) + ω2b1t cos(ωt) + ω2b2t sin(ωt)
= 2ωb2 cos(ωt) − 2ωb1 sin(ωt).

Matching coefficients, we have b1 = 0 and b2 = F0/(2ω).
Therefore,

φp =
F0

2ω0

t sin(ωt)

and the affine space of all solutions is

F0

2ω0

t sin(ω0t) + b1 cos(ω0t) + b2 sin(ω0t), b1, b2 ∈ R.
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ii) Differentiating the expression for an element of the space of solutions above, we have

F0

2ω0

sin(ω0t) +
F0

2
t cos(ω0t) − ω0b1 sin(ω0t) + ω0b2 cos(ω0t).

The initial conditions are y(0) = 0, dy
dt (0) = 0. These impose the conditions

0 + b1 + 0 = 0

0 + 0 + 0 + ω0b2 = 0,

which implies that b1 = b2 = 0.

The solution satisfying these initial conditions is

F0

2ω0

t sin(ω0t).

The solution oscillates with a fixed frequency ω0, with a linearly growing amplitude!

t

It is interesting that the oscillating part of the motion is given by sin(ω0t), so that it
is exactly out of phase with the driving force, which is given by cos(ω0t).
It should be noted that as part of the derivation of the equation of motion of the spring,
we made the approximation that the spring obeys Hooke’s law. As the spring becomes
more and more stretched, Hooke’s approximation ceases to hold.

iii) Using the expression for the derivative from the previous part, the initial conditions
y(0) = 0, dy

dt (0) = 10ω0 impose the conditions

0 + b1 + 0 = 0,

0 + 0 + 0 + ω0b2 = 10ω0.
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So that b1 = 0, b2 = 10.

The solution satisfying the initial conditions is

F0

2ω0

t sin(ω0t) + 10 sin(ω0t) = ( F0

2ω0

t + 10) sin(ω0t).

t

The spring begins already in motion, out of phase with the driving force, and as a
result the linear bounds on the amplitude are displaced.

You are encouraged to play around with a few more types of initial condition. For
instance, what happens when the initial motion is given by a cosine instead of a sine?

4. Let c1, . . . , cr be a collection of real numbers.

i) Suppose that the numbers c1, . . . , cr are pairwise distinct (meaning ci ≠ cj if i ≠ j). Find
a linear homogeneous equation whose space of solutions has the set {ec1t, . . . , ecrt} as
a basis. Using results from class, conclude that the Wronskian W (ec1t, . . . , ecrt)(t) is
not equal to zero for all t ∈ R.

ii) Conclude that the Vandermonde determinant of c1, . . . , cr,

det

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 ⋯ 1
c1 c2 ⋯ cr
c21 c22 ⋯ c2r
⋮ ⋮ ⋱ ⋮

cr−11 cr−12 ⋯ cr−1r

⎞
⎟⎟⎟⎟⎟⎟
⎠
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is not equal to zero if and only if the numbers c1, . . . , cr are pairwise distinct. (Reminder:

in proving an ‘if and only if’ statement, there two directions of implication to show. One of the

directions here is fairly simple, while the other can be proved using the result of part i).)

The Vandermonde determinant comes up often throughout Mathematics, and the property proved in

part ii) is very useful to know.

Solution. i) The equation

( d
dt
− c1)( d

dt
− c2)⋯( d

dt
− cr) y = 0

has the desired set as a basis for its space of solutions (with the domain of the solutions
being all of R).

Because {ec1t, . . . , ecrt} is a basis, it is in particular a linearly independent set. It follows
the discussion of the Wronskian in class that there exists a t0 such that

W (ec1t, . . . , ecrt)(t0) ≠ 0.

Moreover, as discussed in class, since W (ec1t, . . . , ec1t)(t) = C exp(− ∫ ar−1 dt) for some
real constant C by Abel’s theorem, it follows that if W (t0) ≠ 0, then W (t) ≠ 0 for all t.

Therefore,
W (ec1t, . . . , ecrt)(t) ≠ 0 for all t.

ii) Suppose first that the numbers c1, . . . , cr are pairwise distinct. Computing the Wron-
skian of {ec1t, . . . , ecrt}, we have

W (ec1t, . . . , ecrt)(t) = det

⎛
⎜⎜⎜
⎝

ec1t ec2t ⋯ ecrt

c1 ec1t c2 ec2t ⋯ cr ecrt

⋮ ⋮ ⋱ ⋮
cr−11 ec1t cr−12 ec2t ⋯ cr−1r ecrt

⎞
⎟⎟⎟
⎠

= ec1tec2t⋯ecrt det

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 ⋯ 1
c1 c2 ⋯ cr
c21 c22 ⋯ c2r
⋮ ⋮ ⋱ ⋮

cr−11 cr−12 ⋯ cr−1r

⎞
⎟⎟⎟⎟⎟⎟
⎠

= det

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 ⋯ 1
c1 c2 ⋯ cr
c21 c22 ⋯ c2r
⋮ ⋮ ⋱ ⋮

cr−11 cr−12 ⋯ cr−1r

⎞
⎟⎟⎟⎟⎟⎟
⎠

e(c1+⋯+cr)t.

The coefficient of the exponential is nothing but the Vandermonde determinant!

By part i), the left side does not vanish for all t. Therefore, the right side does not
vanish for all t, which would be impossible if the Vandermonde determinant was equal
to 0. Therefore, the Vandermonde determinant is not equal to zero.
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Remark. Since ar−1 (the coefficient of d
r−1y
dtr−1 in our equation having solutions {ec1t, . . . , ecrt})

is equal to −(c1 +⋯ + cr), Abel’s theorem says that

W (ec1t, . . . , ecrt)(t) = C exp(−∫ ar−1 dt) = C exp((c1 +⋯ + cr)t)

for some constant C. What we found above is that the constant C is exactly the
Vandermonde determinant of c1, . . . , cr!

Conversely, suppose that the Vandermonde determinant of c1, . . . , cr is not equal to
zero. We would like to show that then c1, . . . , cr are pairwise distinct.

We show the contrapositive: if c1, . . . , cr are not pairwise distinct, then the Vander-
monde determinant of c1, . . . , cr is equal to zero

Because c1, . . . , cr are not pairwise distinct, at least one pair is equal, say ci = cj.
Then cki = ckj for all k = 0,1,2, . . . , r − 1. Therefore, at least two of the columns of the
Vandermonde matrix are equal to each other. Hence, the columns of the Vandermonde
matrix are linearly dependent, and it follows that the Vandermonde determinant is
equal to zero.
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