
Mthe 237 — Problem Set 06 Solutions

1. Solve the differential equation

d2y

dt2
+ dy
dt
− 2y = 2t, y(0) = 0,

dy

dt
(0) = 1 (1)

using the method of undetermined coefficients, as follows:

i) Find an annihilator pF ( d
dt
) of the function F (t) = 2t. That is, find a polynomial

differential operator pF ( d
dt
) with constant coefficients such that

pF ( d
dt

) (2t) = 0.

ii) Find a basis of solutions of the homogeneous linear differential equation

[pF ( d
dt

) ( d
2

dt2
+ d

dt
− 2)] y = 0.

iii) Find a particular solution φp of (1) in the span of the basis elements found in part ii).

(For this step, it helps save some work to disregard the basis elements that are solutions of

the homogeneous linear equation
d2y

dt2
+ dy
dt
− 2y = 0 associated to (1).)

iv) Find a solution of (1) satisfying the given initial conditions.

(As a reminder, we have shown in lecture that the set of solutions of (1) is equal to

{φp + φh ∶ φh is a solution of the homogeneous linear equation
d2y

dt2
+ dy
dt
− 2y = 0 associated to (1)} .)

Solution. i) One can see that pF ( d
dt
) = d2

dt2 works.

Alternatively, the function F (t) = 2t is contained in the span of {1, t}, which is the
basis of the differential equation whose characteristic polynomial has a double root at

z = 0. The differential equation with characteristic polynomial χ(z) = z2 is d2y
dt2 = 0, so

we find again that we can take pF ( d
dt
) = d2

dt2 .

ii) The operator ( d2

dt2 + d
dt − 2) factors as ( d

dt − 1) ( d
dt + 2), so we are looking for a basis of

solutions of the differential equation

d2

dt2
( d
dt
− 1)( d

dt
+ 2) y = 0.

The characteristic polynomial of this differential equation is

χ(z) = z2(z − 1)(z + 2),
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which has a double root at z = 0, and single roots at z = 1 and z = −2.

Therefore,
{e0t, te0t, et, e−2t} = {1, t, et, e−2t}

is a basis of solutions.

iii) Since et and e−2t are solutions of the associated homogeneous equation

( d
dt
− 1)( d

dt
+ 2) y = 0,

we can disregard them for this step.

Therefore, we look for a particular solution of the form

φp(t) = c1 + c2t, c1, c2 ∈ R.

Differentiating, we have

φ′p(t) = c2,
φ′′p(t) = 0.

So that
φ′′p + φ′p − 2φp = (0) + (c2) − 2(c1 + c2t) = (c2 − 2c1) + (−2c2)t.

For φp to be a solution of (1), this should be equal to F (t) = 2t. By comparing
coefficients, we obtain the system of linear equations

c2 − 2c1 = 0,

−2c2 = 2.

From the second equation, c2 = −1, so that c1 = −1/2.

The function

φp(t) = −
1

2
− t

is a particular solution of (1).

iv) The affine space of all solutions is equal to

−1

2
− t + b1et + b2e−2t, b1, b2 ∈ R.

The derivative of one of these functions is equal to

−1 + b1et − 2b2e
−2t.

Imposing the initial conditions, we arrive at the system of equations

−1

2
− 0 + b1e0 + b2e0 = 0

−1 + b1e0 − 2b2e
0 = 1,
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or

b1 + b2 =
1

2
b1 − 2b2 = 2.

This system of equations has solution b1 = 1, b2 = −1
2 , so the solution satisfying the

initial conditions is

−1

2
− t + et − 1

2
e−2t.

2. i) Suppose that for k = 1, . . . , n, the function φk ∶ I → R is a solution of the differential
equation

dry

dtr
+ ar−1(t)

dr−1y

dtr−1
+⋯ + a1(t)

dy

dt
+ a0(t)y = Fk(t).

Show that then the sum φ = φ1 +⋯ + φn is a solution of the equation

dry

dtr
+ ar−1(t)

dr−1y

dtr−1
+⋯ + a1(t)

dy

dt
+ a0(t)y = F1(t) +⋯ + Fn(t).

ii) Suppose that for k = 1, . . . , n, the polynomial operator pFk
( d
dt
) with constant coeffi-

cients is an annihilator of the function Fk over I. Show that then the product

pF1
( d
dt

)pF2
( d
dt

)⋯pFn
( d
dt

)

is an annihilator of the function F1 +⋯ + Fn over I.

Solution. i) Let p ( d
dt
) denote the differential operator

p( d
dt

) = dr

dtr
+ ar−1(t)

dr−1

dtr−1
+⋯ + a1(t)

d

dt
+ a0(t).

Because p ( d
dt
) has time-varying coefficients, we must be careful not to assume that

it has the same properties as differential operators with constant coefficients, such as
commuting with other differential operators. However, it is clear that as a consequence
of linearity of the derivative that p ( d

dt
) is linear, meaning that

p( d
dt

) (c1φ1+⋯+cnφn) = c1p(
d

dt
) (φ1)+⋯+cnp(

d

dt
) (φn) for all cj ∈ R, φj ∈ Cr(I,R).

Then,

p( d
dt

) (φ) = p( d
dt

) (φ1 +⋯ + φn) = p(
d

dt
) (φ1) +⋯ + p(

d

dt
) (φn) = F1 +⋯ + Fn,

so that φ is indeed a solution of the claimed differential equation.

Here is a simpler way of writing the same solution:
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We have

drφ

dtr
+⋯ + a0(t)(φ) =

dr(φ1 +⋯ + φn)
dtr

+⋯ + a0(t)(φ1 +⋯ + φn)

= (d
rφ1

dtr
+⋯ + a0(t)φ1) +⋯ + (d

rφn

dtr
+⋯ + a0(t)φn)

= F1 +⋯ + Fn.

ii) Applying pF1
( d
dt
)pF2

( d
dt
)⋯pFn

( d
dt
) to F1 +⋯ + Fn, we have

(pF1
( d
dt
)pF2

( d
dt
)⋯pFn

( d
dt
)) (F1 +⋯ + Fn)

= (pF1
( d
dt
)pF2

( d
dt
)⋯pFn

( d
dt
)) (F1) +⋯ + (pF1

( d
dt
)pF2

( d
dt
)⋯pFn

( d
dt
)) (Fn).

Because polynomial differential operators with constant coefficients commute, the j-th
summand in the last expression is equal to

(pF1
( d
dt

)pF2
( d
dt

)⋯pFn
( d
dt

)) (Fj) =
⎛
⎝∏k≠j

pFj
( d
dt

)
⎞
⎠
[pFj

( d
dt

) (Fj)] = 0,

where ∏k≠j pFj
( d
dt
) denotes the product over all indices k ≠ j.

Since every summand is equal to 0, the sum is equal to 0, which shows that pF1
( d
dt
)⋯pFn

( d
dt
)

annihilates F1 +⋯ + Fn.

3. Solve the differential equation

d2y

dt2
+ 16y = t2 + 2 cos(2t) sin(2t), y(0) = 127

128
,

dy

dt
(0) = 7

8

using the method of undetermined coefficients.
(Using the sine angle addition identity, we have sin(2θ) = 2 sin(θ) cos(θ). To handle the right-hand side, it

may help to apply either of the results of Problem 2.)

Solution. Using the sine angle addition identity, we recognize the right side as a quasipoly-
nomial. The differential equation we are to solve is

d2y

dt2
+ 16y = t2 + sin(4t). (2)

Let F1(t) = t2 and F2(t) = sin(4t).
We see that F1 is contained in the span of {1, t, t2}, which is a basis for the space of

solutions of d3y
dt3 = 0, so we may take pF1

( d
dt
) = d3

dt3 .
The function F2 is contained in the span of {cos(4t), sin(4t)}, which is a basis for the

space of solutions of ( d
dt − 4i) ( d

dt + 4i) y = 0, so we may take pF2
( d
dt
) = ( d

dt − 4i) ( d
dt + 4i).
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By Problem 2, part ii), the operator product

d3

dt3
( d
dt
− 4i)( d

dt
+ 4i)

is then an annihilator of t2 + sin(4t).
Applying this annihilator to both sides of (2), we obtain the homogeneous equation

d3

dt3
( d
dt
− 4i)( d

dt
+ 4i)( d

2

dt2
+ 16) y = 0.

Now, ( d2

dt2 + 16) = ( d
dt − 4i) ( d

dt + 4i). So the above equation is

d3

dt3
( d
dt
− 4i)

2

( d
dt
+ 4i)

2

y = 0.

The basis of solutions of this equation is

{1, t, t2, cos(4t), t cos(4t), sin(4t), t sin(4t)} .

Discarding the solutions cos(4t), sin(4t) of the homogeneous equation associated to (2) for
the moment, we look for a particular solution of the form

φp(t) = c1 + c2t + c3t2 + c4 t cos(4t) + c5 t sin(4t).

Differentiating, we find

φ′p(t) = c2 + 2c3t + c4 (cos(4t) − 4t sin(4t)) + c5 (sin(4t) + 4t cos(4t))
= c2 + 2c3t + c4 cos(4t) + c5 sin(4t) + 4c5 t cos(4t) − 4c4 t sin(4t),

φ′′p(t) = 2c3 − 4c4 sin(4t) + 4c5 cos(4t) + 4c5 (cos(4t) − 4t sin(4t)) − 4c4 (sin(4t) + 4t cos(4t))
= 2c3 + 8c5 cos(4t) − 8c4 sin(4t) − 16c4 t cos(4t) − 16c5 t sin(4t).

Therefore,

φ′′p + 16φp
= 2c3 + 8c5 cos(4t) − 8c4 sin(4t) − 16c4 t cos(4t) − 16c5 t sin(4t) + 16(c1 + c2t + c3t2 + c4 t cos(4t) + c5 t sin(4t))
= (16c1 + 2c3) + 16c2 t + 16c3 t2 + 8c5 cos(4t) − 8c4 sin(4t) + (16c4 − 16c4) t cos(4t) + (16c5 − 16c5) t sin(4t)
= (16c1 + 2c3) + 16c2 t + 16c3 t2 + 8c5 cos(4t) − 8c4 sin(4t).

Comparing coefficients with t2 + sin(4t), we find the system of equations

16c1 + 2c3 = 0

16c2 = 0

16c3 = 1

8c5 = 0

−8c4 = 1.
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This system has solution

c1 = −
1

128
, c2 = 0, c3 =

1

16
, c4 = −

1

8
, c5 = 0.

Therefore, we found the particular solution

φp(t) = −
1

128
+ t

2

16
− t cos(4t)
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of equation (2). The affine space of all solutions of (2) is

− 1

128
+ t

2

16
− t cos(4t)

8
+ b1 cos(4t) + b2 sin(4t), b1, b2 ∈ R.

The derivative of such a solution is

t

8
− cos(4t) − 4t sin(4t)

8
− 4b1 sin(4t) + 4b2 cos(4t).

Imposing the initial conditions, we get the system of equations

− 1

128
+ 0 − 0 + b1 + 0 = 127

128
,

0 − 1 − 0

8
− 0 + 4b2 =

7

8
,

which has the solution

b1 = 1, b2 =
1

4
.

So that the solution satisfying the initial conditions is

− 1

128
+ t

2

16
− t cos(4t)

8
+ cos(4t) + sin(4t)

4
.
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