
Mthe 237 — Problem Set 05 Solutions

1. i) Check that the polynomial differential operators

p( d
dt

) = d2

dt2
+ a d

dt
+ b and q ( d

dt
) = d

dt
+ c, a, b, c ∈ C

commute. That is, check that for any function y ∶ I → C,

p( d
dt

) [q ( d
dt

) y] = q ( d
dt

) [p( d
dt

) y] .

Optional Problem. Check that any pair of polynomial differential operators with con-
stant coefficients commutes.

ii) The differential equation

d4y

dt4
− 4

d3y

dt3
+ 14

d2y

dt2
− 20

dy

dt
+ 25y = 0 (1)

has the characteristic polynomial

χ(z) = z4 − 4z3 + 14z2 − 20z + 25 = [(z − (1 + 2i))(z − (1 − 2i))]2 .

Making use of the fact that the corresponding polynomial differential operator factors
as

d4

dt4
− 4

d3

dt3
+ 14

d2

dt2
− 20

d

dt
+ 25 = [( d

dt
− (1 + 2i))( d

dt
− (1 − 2i))]

2

,

as well as the fact that polynomial differential operators with constant coefficients
commute, check that the functions

e(1+2i)t, t e(1+2i)t, e(1−2i)t, t e(1−2i)t

are solutions of (1).

Then, taking for granted that complex linear combinations of complex-valued solutions
of (1) are again solutions (this follows from the fact that the set of complex-valued
solutions of (1) is a complex vector space), show that it follows that

et cos(2t), t et cos(2t), et sin(2t), t et sin(2t)

are also solutions of (1).
Remark. The purpose of part ii) is to go through the computations involved in the general proof
that functions of the form tkewt (with w a root of χ(z)) are solutions of the differential equation
χ(d/dt)y = 0 in a specific example. Because we went through the general proof in lecture, it is not
necessary to perform this check every time we solve a differential equation; the check is done in this
question to help with understanding the general proof.
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Solution. i) We have

p( d
dt

) [q ( d
dt

) y] = p( d
dt

) [( d
dt
+ c) y]

= ( d
2

dt2
+ a d

dt
+ b) [dy

dt
+ cy]

= d2

dt2
(dy
dt
+ cy) + a d

dt
(dy
dt
+ cy) + b(dy

dt
+ cy)

= d2

dt2
(dy
dt

) + d2

dt2
(cy) + a d

dt
(dy
dt

) + a d
dt

(cy) + bdy
dt
+ bcy

= d
3y

dt3
+ cd

2y

dt2
+ ad

2y

dt2
+ acdy

dt
+ bdy

dt
+ bcy

= d
3y

dt3
+ (a + c)d

2y

dt2
+ (ac + b)dy

dt
+ bc y.

On the other hand,

q ( d
dt

) [p( d
dt

) y] = q ( d
dt

) [( d
2

dt2
+ a d

dt
+ b) y]

= ( d
dt
+ c) [d

2y

dt2
+ ady

dt
+ by]

= d

dt
(d

2y

dt2
) + d

dt
(ady
dt

) + d

dt
(by) + cd

2y

dt2
+ c(ady

dt
) + cby

= d
3y

dt3
+ ad

2y

dt2
+ bdy

dt
+ cd

2y

dt2
+ acdy

dt
+ bcy

= d
3y

dt3
+ (a + c)d

2y

dt2
+ (ac + b)dy

dt
+ bc y.

Since both p ( d
dt
) [q ( d

dt
) y] and q ( d

dt
) [p ( d

dt
) y] are equal to d3y

dt3 +(a+c)
d2y
dt2 +(ac+b)

dy
dt +

bc y, they are equal to each other.

The fact that the coefficients a, b, c are constant is crucial for the above computations.

ii) The function e(1+2i)t: We check that

( d
dt
− (1 + 2i)) e(1+2i)t = d

dt
e(1+2i)t − (1 + 2i)e(1+2i)t = (1 + 2i)e(1+2i)t − (1 + 2i)e(1+2i)t = 0.

Therefore,

[( d
dt
− (1 + 2i))( d

dt
− (1 − 2i))]

2

e(1+2i)t

= ( d
dt
− (1 − 2i))( d

dt
− (1 − 2i))( d

dt
− (1 + 2i)) [( d

dt
− (1 + 2i)) e(1+2i)t]

= ( d
dt
− (1 − 2i))( d

dt
− (1 − 2i))( d

dt
− (1 + 2i)) (0)

= 0,
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where the last equality is true by linearity of polynomial differential operators. We
conclude that the function e(1+2i)t is a solution of the differential equation χ(d/dt)y = 0.

The function t e(1+2i)t: We check that

( d
dt
− (1 + 2i)) (t e(1+2i)t) = d

dt
(t e(1+2i)t) − (1 + 2i)t e(1+2i)t

= (e(1+2i)t + (1 + 2i)t e(1+2i)t) − (1 + 2i)t e(1+2i)t

= e(1+2i)t.

Therefore,

( d
dt
− (1 + 2i)) [( d

dt
− (1 + 2i)) (t e(1+2i)t)] = ( d

dt
− (1 + 2i)) [e(1+2i)t] = 0.

We could have reached the same conclusion by applying the lemma shown in class to
the effect of

( d
dt
−w)

m

(f(t)ewt) = d
mf

dtm
ewt, w ∈ C, m ∈ N.

Taking w = 1 + 2i, f = t and m = 2, we have

( d
dt
− (1 + 2i))

2

(t e(1+2i)t) = d
2(t)
dt2

e(1+2i)t = 0 e(1+2i)t = 0.

Thus,

[( d
dt
− (1 + 2i))( d

dt
− (1 − 2i))]

2

(t e(1+2i)t)

= ( d
dt
− (1 − 2i))( d

dt
− (1 − 2i)) [( d

dt
− (1 + 2i))

2

(t e(1+2i)t)]

= ( d
dt
− (1 − 2i))( d

dt
− (1 − 2i)) (0)

= 0,

and so the function t e(1+2i)t is a solution of the differential equation χ(d/dt)y = 0.

The other two functions are checked similarly: we can check that e(1−2i)t is annihilated
by ( d

dt − (1 − 2i)) and t e(1−2i)t is annihilated by ( d
dt − (1 − 2i))2 —

( d
dt
− (1 − 2i)) e(1−2i)t = d

dt
e(1−2i)t − (1 − 2i)e(1−2i)t = (1 − 2i)e(1−2i)t − (1 − 2i)e(1−2i)t = 0

and

( d
dt
− (1 − 2i)) (t e(1−2i)t) = d

dt
(t e(1−2i)t) − (1 − 2i)t e(1−2i)t

= (e(1−2i)t + (1 − 2i)t e(1−2i)t) − (1 − 2i)t e(1−2i)t

= e(1−2i)t,
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so

( d
dt
− (1 − 2i)) [( d

dt
− (1 − 2i)) (t e(1−2i)t)] = ( d

dt
− (1 − 2i)) [e(1−2i)t] = 0.

Therefore, both e(1−2i)t and t e(1−2i)t are solutions of χ(d/dt)y = 0 —

[( d
dt
− (1 + 2i))( d

dt
− (1 − 2i))]

2

e(1+2i)t

= ( d
dt
− (1 + 2i))( d

dt
− (1 + 2i))( d

dt
− (1 − 2i)) [( d

dt
− (1 − 2i)) e(1−2i)t]

= ( d
dt
− (1 + 2i))( d

dt
− (1 + 2i))( d

dt
− (1 − 2i)) (0)

= 0,

and

[( d
dt
− (1 + 2i))( d

dt
− (1 − 2i))]

2

(t e(1+2i)t)

= ( d
dt
− (1 + 2i))( d

dt
− (1 + 2i)) [( d

dt
− (1 − 2i))

2

(t e(1−2i)t)]

= ( d
dt
− (1 + 2i))( d

dt
− (1 + 2i)) (0)

= 0.

Finally, we have

1

2
e(1+2i)t + 1

2
e(1−2i)t = e

te2it + ete−2it
2

= et (e
2it + e−2it

2
) = et cos(2t),

1

2i
e(1+2i)t − 1

2i
e(1−2i)t = e

te2it − ete−2it
2i

= et (e
2it − e−2it

2i
) = et sin(2t),

1

2
te(1+2i)t + 1

2
te(1−2i)t = te

te2it + ete−2it
2

= tet (e
2it + e−2it

2
) = tet cos(2t),

1

2i
te(1+2i)t − 1

2i
te(1−2i)t = te

te2it − ete−2it
2i

= tet (e
2it − e−2it

2i
) = tet sin(2t).

Since linear combinations of solutions are again solutions, we conclude that

et cos(2t), t et cos(2t), et sin(2t), t et sin(2t)

are also solutions of (1).

2. In this problem, we look at a cylindrical cork bobbing up and down in a pool of fluid.
Let d denote the density of the cork, and let ρ denote the density of the fluid (both are

assumed uniform). Assume that d < ρ. Let A denote the area of the circular face of the cork,
and let ` denote the length of the cork (measured perpendicular to the circular face).
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Choose coordinates so that the surface of the fluid is in the xy-plane, and the positive
z-direction points out of the pool of fluid. Assume that gravity is uniform, with gravitational
constant g, and points in the negative z-direction.

i) By Archimedes’ principle, the fluid exerts a buoyant force on the cork (in the positive
z direction) equal to the weight (= mass times gravitational constant) of the fluid
displaced by the cork.

If the cork floats at rest in the pool of fluid, the weight of the fluid displaced by the
submerged part of the cork must be equal to the total weight of the cork.

Suppose that the cork floats at rest with its circular face parallel to the surface of the
fluid. Let h denote the height of the submerged part of the cork measured from its
bottom face. Show that

h = (d
ρ
) `.

ii) Let z denote the displacement of the cork from the rest level h (take the displacement
to be positive along the positive z direction, so that the cork is still oriented with its
circular faces parallel to the surface of the fluid, and small enough so that the cork
does not completely leave the fluid). Show that the sum of the gravitational force on
the cork and the buoyant force is

−Aρgz ez,

where ez is the unit vector in the positive z-direction.

iii) As long as the motion of the cork is not too rapid (and the fluid is sufficiently viscous),
the fluid exerts a drag force on the cork proportional to the velocity of its motion, and
directed opposite to the velocity. (This is called the laminar case. If there is turbulence, the

drag is proportional to the square of the velocity, and the problem is no longer linear.) Thus,
the net force on the cork is (−bdzdt −Aρgz)ez. By Newton’s second law, the equation of
motion is

A`d±
Mass of cork

d2z

dt2
+ bdz

dt
+Aρgz = 0.

In terms of the constants A, `, d, b, ρ, g, characterize when the resulting motion will be
overdamped, critically damped, and underdamped. Briefly describe the motion of the
cork in each of these three cases.

Solution. i) In these solutions, we refer to the fluid simply as water (though it could also
be, for example, honey, vinegar, liquid helium, wet cement, and so on).

A vertical cross-section of the situation looks as follows:

h `
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The shaded part of the cork is underwater.

The volume of the water displaced by the cork is equal to hA, hence the mass of the
water displaced by the cork is (hA)ρ, and the weight of the water displaced by the
cork is (hA)ρg. The weight of the cork is similarly computed to be (`A)dg.

When the cork floats at rest, the gravity on the cork is balanced by the buoyant force,
and we have

hAρg = `Adg.
The constants A and g cancel out, and, solving for h, we find

h = (d
ρ
) `.

We can interpret this result as follows: the proportion of the cork that is underwater
is equal to the ratio of the two densities d/ρ. Note that when d > ρ, that is the cork is
denser than the fluid, we get the absurd result that h > `. In this case, the cork will
sink!

ii) The length of the cork that is underwater will be equal to h − z:

h
z
h − z

Therefore, the buoyant force is equal to ((h − z)Aρg)ez. The gravitational force on
the cork is still −(`Adg)ez.
The sum of the two forces is

((h − z)Aρg − `Adg) ez = (hAρg − `Adg − zAρg) ez.

Since hAρg = `Adg, the first two terms cancel out and we get

−Aρgz ez.

iii) Dividing through by the mass A`d, we get a second order linear homogeneous equation
in standard form:

d2z

dt2
+ b

A`d

dz

dt
+ ρg
`d
z = 0. (2)

The behaviour of the solutions depends on the sign of the discriminant

( b

A`d
)
2

− 4
ρg

`d
= b

2 − 4A2`dρg

(A`d)2 = b
2 − 4Amρg

m2
,

of the characteristic polynomial of (2) (we have introduced the notation m = A`d for
the mass of the cork).

6



Now, the sign of the discriminant above is the same as the sign of its numerator
b2 − 4Amρg.

There are three cases: b2 > 4Amρg, b2 = 4Amρg and b2 < 4Amρg.

Because b > 0 by (unstated) assumption, we can take the positive square root in each
case without loss of generality. The three cases are

• b > 2
√
Amρg: The characteristic polynomial has two distinct real roots. The

motion is overdamped. One can imagine the cork slowly sinking into very dense
fluid;

• b = 2
√
Amρg: The characteristic polynomial has a repeated real root. The motion

is critically damped. The cork returns to its rest state, possibly bobbing at most
once;

• b < 2
√
Amρg: The characteristic polynomial has two conjugate complex roots.

The motion is underdamped. The cork oscillates up and down, with an exponen-
tially decreasing amplitude.

3. Using Abel’s theorem, find the Wronskian of two solutions of Bessel’s equation

d2y

dt2
+ 1

t

dy

dt
+ (1 − ν

2

t2
) y = 0, t > 0,

up to a real constant.

Solution. Abel’s theorem says that if φ1, . . . , φr is a set of solutions (not necessarily linearly
independent) of the linear homogeneous differential equation

dry

dtr
+ ar−1(t)

dr−1y

dtr−1
+⋯ + a0(t)y = 0,

over I, where ar−1, . . . , a0 are continuous over I, then there exists a real number C ∈ R such
that

W (φ1, . . . , φr)(t) = C exp(−∫ ar−1(t)dt) .

For Bessel’s equation, ar−1(t) = a1(t) = t−1. We have

−∫ a1(t)dt = −∫
dt

t
= − ln(t) = ln(1

t
) ,

and so

W (φ1, φ2)(t) = C exp(ln(1/t)) = C
t
,

for some real number C.
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