MTHE 237 — PROBLEM SET 04 SOLUTIONS

1. Solve the following differential equations.

i)
$$\frac{dy}{dt} + 2017y = 0$$
, $y(0) = 5$.
ii) $\frac{d^2y}{dt^2} - 10\frac{dy}{dt} + 21y = 0$, $y(0) = 5$, $\frac{dy}{dt}(0) = 19$.
iii) $\frac{d^2y}{dt^2} - 6\frac{dy}{dt} + 25y = 0$, $y(0) = 1$, $\frac{dy}{dt}(0) = 15$.

iv)
$$\frac{d^2y}{dt^2} + 8\frac{dy}{dt} + 16y = 0$$
, $y(0) = 1$, $\frac{dy}{dt}(1) = 10$

v)
$$\frac{d^6y}{dt^6} - y = 0.$$
 (It is sufficient to find a basis for the space of solutions.)

Solution. i) The characteristic polynomial is $\chi(z) = z + 2017$. This has a single real root at z = -2017. Therefore, a basis of solutions is

$$\{e^{-2017t}\}.$$

Elements of the solution space have the form

$$c e^{-2017t}, \quad c \in \mathbb{R}.$$

Imposing the initial condition y(0) = 5, we find

$$c e^0 = 5$$
 so $c = 5$.

The solution is

$$5e^{-2017t}, \quad t \in \mathbb{R}.$$

ii) The characteristic polynomial is $\chi(z) = z^2 - 10z + 21 = (z - 3)(z - 7)$. This has two distinct real roots. Therefore, a basis of solutions is

 $\{e^{3t}, e^{7t}\}.$

Elements of the solution space have the form

$$c_1 e^{3t} + c_2 e^{7t}, \quad c_1, c_2 \in \mathbb{R}.$$

Imposing the initial conditions,

$$c_1 e^0 + c_2 e^0 = 5,$$

 $3c_1 e^0 + 7c_2 e^0 = 19.$

So that

$$c_1 + c_2 = 5,$$

 $3c_1 + 7c_2 = 19.$

Subtracting three times the first equation from the second, we obtain $4c_2 = 4$, so $c_2 = 1$, and so, from the first equation, $c_1 = 4$.

The solution is

$$4e^{3t} + e^{7t}, \quad t \in \mathbb{R}.$$

iii) The characteristic polynomial is $\chi(z) = z^2 - 6z + 25$. Using the quadratic formula, we find that the roots are

$$\frac{6 \pm \sqrt{6^2 - 4 \cdot 25}}{2} = \frac{6 \pm \sqrt{-64}}{2} = 3 \pm 4i.$$

A basis of solutions is

$$\{e^{3t}\cos(4t), e^{3t}\sin(4t)\}\$$

Elements of the space of solutions look like

$$c_1 e^{3t} \cos(4t) + c_2 e^{3t} \sin(4t) = e^{3t} (c_1 \cos(4t) + c_2 \sin(4t)), \quad c_1, c_2 \in \mathbb{R}.$$

The derivative of such a solution is

$$3e^{3t}(c_1\cos(4t)+c_2\sin(4t))+e^{3t}(-4c_1\sin(4t)+4c_2\cos(4t)) = e^{3t}((3c_1+4c_2)\cos(4t)+(3c_2-4c_1)\sin(4t))$$

Imposing the initial conditions,

$$e^{0}(c_{1}\cos(0) + c_{2}\sin(0)) = 1,$$

$$e^{0}((3c_{1} + 4c_{2})\cos(0) + (3c_{2} - 4c_{1})\sin(0)) = 15,$$

so that

$$c_1 = 1,$$

 $3c_1 + 4c_2 = 15.$

Therefore, $c_1 = 1$ and $4c_2 = 12$, so that $c_2 = 3$.

The solution is

$$e^{3t}\left(\cos(4t) + 3\sin(4t)\right), \quad t \in \mathbb{R}.$$

iv) The characteristic polynomial is $\chi(z) = z^2 + 8z + 16 = (z + 4)^2$. This has a real double root at z = -4. Therefore, a basis of solutions is

$$\{e^{-4t}, te^{-4t}\}.$$

The elements of the space of solutions look like

$$c_1 e^{-4t} + c_2 t e^{-4t}, \quad c_1, c_2 \in \mathbb{R}.$$

The derivative of a solution is

$$-4c_1e^{-4t} + c_2(e^{-4t} - 4te^{-4t}) = (-4c_1 + (1 - 4t)c_2)e^{-4t}.$$

Imposing the initial conditions,

$$c_1 e^0 + c_2 \cdot 0 = 1,$$

 $(-4c_1 + (1-4)c_2)e^{-4} = 10.$

Therefore, $c_1 = 1$ and $c_2 = -(10e^4 + 4)/3$. The solution is

$$e^{-4t} - \frac{10e^4 + 4}{3}te^{-4t}, \quad t \in \mathbb{R}.$$

v) The characteristic polynomial $\chi(z) = z^6 - 1$. The roots are the sixth roots of unity, which are, as discussed in lecture, of the form $\exp\left(i\frac{2\pi k}{6}\right)$, $k = 0, 1, \ldots, 5$. Writing out the sixth roots of unity,

$$\exp(0), \exp\left(i\frac{2\pi}{6}\right), \exp\left(i\frac{4\pi}{6}\right), \exp\left(i\frac{6\pi}{6}\right), \exp\left(i\frac{8\pi}{6}\right), \exp\left(i\frac{10\pi}{6}\right).$$

These expressions simplify to

1,
$$\exp\left(i\frac{\pi}{3}\right)$$
, $\exp\left(i\frac{2\pi}{3}\right)$, $\exp(i\pi) = -1$, $\exp\left(i\frac{4\pi}{3}\right)$, $\exp\left(i\frac{5\pi}{3}\right)$.

By Euler's formula, these are equal to (using the facts that $\cos(\pi/3) = 1/2$ and $\sin(\pi/3) = \sqrt{3}/2$)

1,
$$\frac{1+i\sqrt{3}}{2}$$
, $\frac{-1+i\sqrt{3}}{2}$, -1 , $\frac{-1-i\sqrt{3}}{2}$, $\frac{1-i\sqrt{3}}{2}$.

There are two distinct real roots at z = 1 and z = -1, as well as two conjugate pairs of complex roots. A basis for the space of solutions is given by

$$\left\{e^{t}, e^{-t}, e^{t/2}\cos\left(\frac{\sqrt{3}}{2}t\right), e^{t/2}\sin\left(\frac{\sqrt{3}}{2}t\right), e^{-t/2}\cos\left(\frac{\sqrt{3}}{2}t\right), e^{-t/2}\sin\left(\frac{\sqrt{3}}{2}t\right)\right\}.$$

2. In each of the following, find a linear homogeneous differential equation with constant coefficients with the given functions as a basis for its space of solutions.

i)
$$\phi_1(t) = e^t$$
, $\phi_2(t) = e^{2t}$.

ii)
$$\phi_1(t) = e^t$$
, $\phi_2(t) = e^{2t}$, $\phi_3(t) = e^{3t}$.

iii) $\phi_1(t) = e^{-kt}$, $\phi_2(t) = t e^{-kt}$, $\phi_3(t) = e^{2t}$, where k is a real number.

iv) $\phi_1(t) = e^{\sigma t} \cos(\omega t)$, $\phi_2(t) = e^{\sigma t} \sin(\omega t)$, where σ and $\omega \neq 0$ are real numbers.

v)
$$\phi_1(t) = 1$$
, $\phi_2(t) = t$, $\phi_3(t) = t^2$, $\phi_4(t) = e^{-t}\cos(t)$, $\phi_5(t) = e^{-t}\sin(t)$.

Solution. i) The characteristic polynomial should have two distinct real roots at z = 1 and z = 2, so should be equal to

$$\chi(z) = (z-1)(z-2) = z^2 - 3z + 2.$$

The corresponding differential equation is

$$\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = 0.$$

ii) The characteristic polynomial should have three distinct real roots at z = 1, z = 2 and z = 3, so should be equal to

$$\chi(z) = (z-1)(z-2)(z-3) = (z^2 - 3z + 2)(z-3) = z^3 - 6z^2 + 11z - 6.$$

The corresponding differential equation is

$$\frac{d^3y}{dt^3} - 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} - 6y = 0.$$

iii) The characteristic polynomial should have a double root at z = -k, and a single root at z = 2. So, it should be equal to

$$\chi(z) = (z+k)^2(z-2) = (z^2+2kz+k^2)(z-2) = z^3+2(k-1)z^2+k(k-4)z-2k^2.$$

The corresponding differential equation is

$$\frac{d^3y}{dt^3} + 2(k-1)\frac{d^2y}{dt^2} + k(k-4)\frac{dy}{dt} - 2k^2y = 0.$$

iv) The characteristic polynomial should have roots at $z = \sigma + i\omega$ and $z = \sigma - i\omega$, so should be equal to

$$\chi(z) = (z - (\sigma + i\omega))(z - (\sigma - i\omega)) = z^2 - 2\sigma z + (\sigma^2 + \omega^2).$$

The corresponding differential equation is

$$\frac{d^2y}{dt^2} - 2\sigma \frac{dy}{dt} + (\sigma^2 + \omega^2)y = 0.$$

v) The characteristic polynomial should have a triple root at z = 0, and a pair of complex roots $z = -1 \pm i$.

$$\chi(z) = z^3(z - (-1 + i))(z - (-1 - i)) = z^3(z^2 + 2z + 2) = z^5 + 2z^4 + 2z^3.$$

The corresponding differential equation is

$$\frac{d^5y}{dt^5} + 2\frac{d^4y}{dt^4} + 2\frac{d^3y}{dt^3} = 0.$$

3. By comparing the real and imaginary parts of the identity

$$e^{i(\theta+\phi)} = e^{i\theta}e^{i\phi},$$

show the angle addition identities for sin and cos:

$$\sin(\theta + \phi) = \sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi), \text{ and}$$
$$\cos(\theta + \phi) = \cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi).$$

Solution. By Euler's formula, the left-hand side is

$$e^{i(\theta+\phi)} = \cos(\theta+\phi) + i\sin(\theta+\phi).$$

The right-hand side is

$$(\cos(\theta) + i\sin(\theta))(\cos(\phi) + i\sin(\phi)) = \cos(\theta)\cos(\phi) + i\cos(\theta)\sin(\phi) + i\sin(\theta)\cos(\phi) - \sin(\theta)\sin(\phi)$$

Comparing the real and imaginary parts of the two sides, we see that

$$\cos(\theta + \phi) = \text{real part of } e^{i(\theta + \phi)} = \cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi)$$

and

$$\sin(\theta + \phi) = \text{imaginary part of } e^{i(\theta + \phi)} = \cos(\theta)\sin(\phi) + \sin(\theta)\cos(\phi).$$

4 (Simple harmonic motion). Consider a mass hanging on a spring with spring constant k. After an initial stretch of the spring to balance the force of gravity, the mass will hang at rest. Choose a coordinate system such that the y-axis is aligned with the spring, and such that the rest point of the mass is at y = 0.

If the mass is moved a distance y from y = 0, it will be acted on by a restoring force due do the spring, given by Hooke's law: $\mathbf{F}_{\text{restoring}} = -ky$. In the absence of other forces (such as damping), the motion of the mass is described by

$$m\frac{d^2y}{dt^2} = -ky$$
 (Newton's second law),

or, bringing to standard form for a linear equation,

$$\frac{d^2y}{dt^2} + \omega^2 y = 0, \qquad \text{where } \omega^2 = k/m.$$
(1)

- i) Find the roots of the characteristic polynomial of (1), and conclude that $\phi_1(t) = \cos(\omega t)$ and $\phi_2(t) = \sin(\omega t)$ are a basis for the space of solutions of (1).
- ii) Check that for real numbers $A \ge 0$ and $\phi \in (-\pi, \pi]$, the function

$$A\cos(\omega t + \phi),$$

is a solution of (1). Therefore, we have

$$A\cos(\omega t + \phi) = c_1 \cos(\omega t) + c_2 \sin(\omega t)$$

for some real numbers c_1 , c_2 . Find c_1 and c_2 in terms of A and ϕ . (Suggestion: Expand $\cos(\omega t + \phi)$ using the angle addition identity, and make use of the fact that any vector is expressed uniquely as a linear combination of basis elements.)

iii) Find A and ϕ so that the function $A\cos(\omega t + \phi)$ is a solution of (1) with initial conditions

$$y(0) = y_0, \qquad \frac{dy}{dt}(0) = v_0\omega.$$

Conclude that any solution of (1) may be written in the form $A\cos(\omega t + \phi)$.

- iv) The parameters ω , A and ϕ are called the frequency, amplitude and phase of the motion, respectively. Briefly describe (with sketches, if possible) how the graph of $A\cos(\omega t + \phi)$ depends on these three parameters.
- Solution. i) The characteristic polynomial of (1) is $\chi(z) = z^2 + \omega^2 = (z + i\omega)(z i\omega)$. This has two complex roots at $\pm i\omega$, so by the general procedure for solving linear homogeneous differential equations with constant coefficients the two claimed functions are a basis of the space of solutions.
 - ii) Differentiating twice, we find

$$\frac{d}{dt}A\cos(\omega t + \phi) = -A\omega\sin(\omega t + \phi)$$
$$\frac{d^2}{dt^2}A\cos(\omega t + \phi) = -A\omega^2\cos(\omega t + \phi)$$

Therefore,

$$\frac{d^2A\cos(\omega t + \phi)}{dt^2} + \omega^2A\cos(\omega t + \phi) = 0,$$

so that $A\cos(\omega t + \phi)$ is a solution of equation (1).

Expanding $\cos(\omega t + \phi)$ using the cosine angle-addition identity from question 3, we have

$$\cos(\omega t + \phi) = \cos(\omega t)\cos(\phi) - \sin(\omega t)\sin(\phi)$$

Therefore,

$$A\cos(\omega t + \phi) = A\cos(\phi)\cos(\omega t) - A\sin(\phi)\sin(\omega t),$$

so that

 $c_1 = A\cos(\phi)$ and $c_2 = -A\sin(\phi)$.

iii) Differentiating, we have

$$\frac{d}{dt}A\cos(\omega t + \phi) = -A\omega\sin(\omega t + \phi)$$

Therefore, we are looking for A and ϕ so that

$$y_0 = y(0) = A\cos(0 + \phi) = A\cos(\phi),$$

$$v_0\omega = \frac{dy}{dt}(0) = -A\omega\sin(\phi) \quad \text{so that} \quad v_0 = -A\sin(\phi).$$

(The last computation assumes that $\omega \neq 0$.) Adding the squares of the two initial conditions, we find

$$y_0^2 + v_0^2 = A^2 \cos^2(\phi) + A^2 \sin^2(\phi) = A^2,$$

so that necessarily

$$A = \sqrt{y_0^2 + v_0^2}.$$

Dividing the two solutions, we find

$$-\frac{v_0}{y_0} = -\frac{-A\sin(\phi)}{A\cos(\phi)} = \tan(\phi).$$

Now, solving the last equation for ϕ is a little subtle. The solution depends on the signs of y_0 and v_0 .

The solution is

$$\phi = \begin{cases} \arctan\left(-\frac{v_0}{y_0}\right) + \frac{\pi}{2}, & y_0 > 0, \ -v_0 > 0\\ \frac{\pi}{2}, & y_0 = 0, \ -v_0 > 0\\ \arctan\left(-\frac{v_0}{y_0}\right), & y_0 > 0, \ -v_0 > 0\\ -\frac{\pi}{2}, & y_0 = 0, \ -v_0 < 0\\ \arctan\left(-\frac{v_0}{y_0}\right) - \frac{\pi}{2}, & y_0 < 0, \ -v_0 < 0 \end{cases}$$

With these choices of A and ϕ , the function $A\cos(\omega t + \phi)$ satisfies the initial conditions

$$y(0) = y_0, \qquad \frac{dy}{dt}(0) = v_0\omega.$$

By part ii), the functions $A\cos(\omega t + \phi)$ are solutions for any A and ϕ , and so we obtain a map

{Functions of form
$$A\cos(\omega t + \phi)$$
} \longrightarrow {Solutions of $\frac{d^2y}{dt^2} + \omega^2 y = 0$ }

Because any initial condition may be realized by some choice of A and ϕ , it follows that this map is surjective.

(The vector space of solutions is isomorphic to \mathbb{R}^2 , with one isomorphism given by

$$\Psi_0 \colon \phi \mapsto \left(\phi(0), \, \frac{d\phi}{dt}(0)\right),$$

where ϕ is a solution of $d^2y/dt^2 + \omega^2 y = 0$. So, if any initial condition may be realized by a function of the form $A\cos(\omega t + \phi)$, it follows that the composition

$$\{\text{Functions of form } A\cos(\omega t + \phi)\} \longrightarrow \left\{\text{Solutions } \phi \text{ of } \frac{d^2y}{dt^2} + \omega^2 y = 0\right\} \longrightarrow \left\{\left(\phi(0), \frac{d\phi}{dt}(0)\right)\right\}$$

is surjective. It then follows that the first map is also surjective.)

iv) The amplitude A scales the graph of $A\cos(\omega t + \phi)$ vertically.

In terms of the simple harmonic oscillator, the y-coordinate of the motion oscillates between +A and -A.

The frequency changes how often the graph of $A\cos(\omega t + \phi)$ oscillates.

The phase shifts the graph of $A\cos(\omega t + \phi)$ horizontally.

The blue graph is has $\phi = \pi/4$ (the graph is shifted left) and the red graph has $\phi = -\pi/4$ (the graph is shifted right).