MTHE 237 — PROBLEM SET 04 SOLUTIONS

1. Solve the following differential equations.

d
i) d—g +2017y =0, y(0)=5.

L Py dy dy
— -10—+21y =0 0)=5, —(0)=19.

i) — o T2y =0, y(0)=5 - (0)

L Py dy dy
— -6—+25y=0 0)=1, —(0)=15.

iif) -5 ~6—+25y=0, y(0)=1, —(0)

. d¥y o dy dy
— +8—=+16y =0 0)=1, —(1)=10.

iv) —5+8 4 16y=0, y(0)=1, —(1)
d% : . . .

\9) P y=0. (It is sufficient to find a basis for the space of solutions.)

Solution. i) The characteristic polynomial is x(z) = z + 2017. This has a single real root

at z = -2017. Therefore, a basis of solutions is

{6_2017t}.

Elements of the solution space have the form

ce 0 ceR.

Imposing the initial condition y(0) =5, we find
ce®=5 soc=5.

The solution is
56—2017t te R

ii) The characteristic polynomial is x(z) = 22 = 10z + 21 = (2 - 3)(z — 7). This has two
distinct real roots. Therefore, a basis of solutions is

(¥, e},
Elements of the solution space have the form
e’ +cpe™, ¢, e € R.

Imposing the initial conditions,

c1€’ + coe’ = 5,

3c1e’ + Tege! = 19,
So that

c1+cy =05,
301 + 702 =19.



Subtracting three times the first equation from the second, we obtain 4c, =4, so ¢ =1,
and so, from the first equation, ¢; = 4.

The solution is
4e3t v e, teRR.

iii) The characteristic polynomial is x(z) = 22 — 6z + 25. Using the quadratic formula, we
find that the roots are

6+vV62-4-25 _6+/-64
2 - 2

=3+ 4.

A basis of solutions is
{3t cos(4t), €3 sin(4t)}.

Elements of the space of solutions look like
c1e3 cos(4t) + coe® sin(4t) = e3'(c; cos(4t) + cpsin(4t)), ci, o € R.
The derivative of such a solution is
3e3 (e cos(4t)+cy sin(4t) ) +e3 (e sin(4t)+4cy cos(4t)) = e34((3ci+4cy) cos(4t)+(3ca—4c; ) sin(4t)).
Imposing the initial conditions,

(¢ cos(0) + cosin(0)) = 1,
e%((3cy +4cy) cos(0) + (3¢ — 4c;) sin(0)) = 15,

so that

C1 = ]_,
3C1 + 4C2 =15.

Therefore, ¢; =1 and 4¢y = 12, so that ¢y = 3.

The solution is
3 (cos(4t) +3sin(4t)), teR.

iv) The characteristic polynomial is x(z) = 22 + 8z + 16 = (z + 4)2. This has a real double
root at z = —4. Therefore, a basis of solutions is

{e7%, te~tt).
The elements of the space of solutions look like

cie M +eote™ ¢, cpeR.
The derivative of a solution is

~dere™ + cy(e — dte™) = (—dey + (1 - 4t)cp)e ™.
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Imposing the initial conditions,

1€’ +¢y-0= 1,
(—4cp + (1-4)cy)e™ = 10.

Therefore, ¢; =1 and ¢y = —(10e* + 4)/3. The solution is

10e* + 4
et~ 063+ te ™™, teRR.

v) The characteristic polynomial y(z) = 26 — 1. The roots are the sixth roots of unity,
which are, as discussed in lecture, of the form exp (z%) , k=0,1,...5.

Writing out the sixth roots of unity,

27 A 67 8 107
exp (0), exp (ZE)’ exp (ZE), exp (ZE), exp (ZF), exp (z—)

These expressions simplify to

1, e (zﬁ) e (i27r) exp(im) =-1, e (i47r) e (2,57r)
xp | i—= xp | i— X =-1, exp|i— xp|i—].
, €Xp 3) p 3 ) plvm ; €Xp 3 ) p 3

By Euler’s formula, these are equal to (using the facts that cos(w/3) = 1/2 and

sin(7/3) = V3/2)

1+iV3 -1+iV3 . -1-4v/3 1-4iV3

1
’ 2 2 ’ 2 2

There are two distinct real roots at z =1 and z = -1, as well as two conjugate pairs of
complex roots. A basis for the space of solutions is given by

{et, et e”%os(?t), et/2sin(\/7§t), e‘”%os(?t), e‘”%in(?t)}.

2. In each of the following, find a linear homogeneous differential equation with constant
coefficients with the given functions as a basis for its space of solutions.

i) ¢1(t) =€, Pa(t) = €e*.
i) ¢i(t) =e',  a(t) =€*, ¢3(t) =€
i) ¢1(t) =e ., ¢o(t) =te*,  p3(t) =e?, where k is a real number.
iv) ¢1(t) = et cos(wt), o(t) =e'sin(wt), where o and w # 0 are real numbers.
)

v) ¢1(t) =1, @a(t) =t, @3(t) =12, Pa(t) =etcos(t), ¢s5(t)=etsin(t).



Solution. i) The characteristic polynomial should have two distinct real roots at z = 1

ii)

iii)

iv)

and z = 2, so should be equal to
x(2)=(z-1)(z-2) =2 -3z +2.
The corresponding differential equation is

d?y  _dy
YY_ 3% L9y=0.
a2 Tar Y

The characteristic polynomial should have three distinct real roots at z =1,z =2 and
z =3, so should be equal to

x(2)=(z-1)(z-2)(2-3) = (2 -32+2)(2-3) =2° - 62% + 112 - 6.
The corresponding differential equation is

3 2y
LY _60Y ., 1%

O g ~Ou=0.

The characteristic polynomial should have a double root at z = —k, and a single root
at z = 2. So, it should be equal to

x(2)=(z+k)*(2-2) = (2 +2kz+k*)(2-2) = 22+ 2(k - 1)2% + k(k - 4)z - 2k>.
The corresponding differential equation is

d3

dy
+2(k-1 +k(k-4)—2-2k*y=0.
T k-1 k(- 22y =0

The characteristic polynomial should have roots at z = 0 +iw and z = ¢ —iw, so should
be equal to

x(2)=(z- (0 +iw))(z - (0 —iw)) = 22 = 202 + (0 + w?).
The corresponding differential equation is

d?y dy
@—2 +(0'2+(.U2)y:0.

The characteristic polynomial should have a triple root at z = 0, and a pair of complex
roots z = -1 +1.

x(2) =23z - (~1+0))(z - (-1-1)) = 22(2% + 22+ 2) = 2° + 22 + 223,
The corresponding differential equation is

Py dy &Py
— +2—= =0.
ar T ar
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3. By comparing the real and imaginary parts of the identity
(i(0+9) _ (i it

show the angle addition identities for sin and cos:

sin(0 + ¢) = sin(0) cos(¢) + cos(#) sin(¢), and

cos(f + ¢) = cos(8) cos(p) —sin(0) sin(¢).
Solution. By Euler’s formula, the left-hand side is

e0+®) = cos(0 + ¢) +isin(d + ¢).
The right-hand side is
(cos(8)+isin(0))(cos(p)+isin(p)) = cos(0) cos(¢)+icos(8) sin(¢p)+isin(f) cos(¢)-sin(0) sin(¢).
Comparing the real and imaginary parts of the two sides, we see that
cos(6 + ¢) = real part of e®*®) = cos(#) cos(¢p) - sin(#) sin(¢p)

and
sin(6 + ¢) = imaginary part of e/**%) = cos(#) sin(¢) + sin(8) cos(¢).

4 (Simple harmonic motion). Consider a mass hanging on a spring with spring constant k.
After an initial stretch of the spring to balance the force of gravity, the mass will hang at
rest. Choose a coordinate system such that the y-axis is aligned with the spring, and such
that the rest point of the mass is at y = 0.

If the mass is moved a distance y from y = 0, it will be acted on by a restoring force due
do the spring, given by Hooke’s law: Fiestoring = —ky. In the absence of other forces (such as
damping), the motion of the mass is described by

d?y

m—y = ~ky (Newton’s second law),

or, bringing to standard form for a linear equation,

&y +wly =0 where w? = k/m (1)
dt? 7 .

i) Find the roots of the characteristic polynomial of (1), and conclude that ¢;(t) = cos(wt)
and ¢9(t) = sin(wt) are a basis for the space of solutions of (1).

ii) Check that for real numbers A >0 and ¢ € (-m, 7], the function
Acos(wt + ¢),
is a solution of (1). Therefore, we have
Acos(wt + @) = ¢; cos(wt) + o sin(wt)

for some real numbers ¢, ¢o. Find ¢; and ¢y in terms of A and ¢. (Suggestion: Expand
cos(wt + ¢) using the angle addition identity, and make use of the fact that any vector is expressed

uniquely as a linear combination of basis elements.)
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iii) Find A and ¢ so that the function A cos(wt+¢) is a solution of (1) with initial conditions

d
y(0) = yo, d—g;(O) = Vow.
Conclude that any solution of (1) may be written in the form A cos(wt + ¢).

iv) The parameters w, A and ¢ are called the frequency, amplitude and phase of the motion,
respectively. Briefly describe (with sketches, if possible) how the graph of A cos(wt+¢)
depends on these three parameters.

Solution. i) The characteristic polynomial of (1) is x(z) = 22 + w? = (z +w)(z — Ww).
This has two complex roots at +iw, so by the general procedure for solving linear
homogeneous differential equations with constant coefficients the two claimed functions
are a basis of the space of solutions.

ii) Differentiating twice, we find

%A cos(wt + ¢) = —Awsin(wt + @)
2
%A cos(wt + ¢) = —Aw? cos(wt + ¢).

Therefore,
d? A cos(wt + ¢)
dt?
so that Acos(wt + ¢) is a solution of equation (1).

+w?Acos(wt +¢) =0,

Expanding cos(wt + ¢) using the cosine angle-addition identity from question 3, we

have
cos(wt + @) = cos(wt) cos(¢) — sin(wt) sin(¢).
Therefore,
Acos(wt + ¢) = Acos(¢) cos(wt) — Asin(¢) sin(wt),
so that

¢ = Acos(¢p) and ¢y =-Asin(¢).

iii) Differentiating, we have

d :

aA cos(wt + ¢) = —Awsin(wt + ¢).
Therefore, we are looking for A and ¢ so that

Yo =y(0) = Acos(0 + ¢) = Acos(¢),

Vow = CCZZ—ZZ(O) = —Awsin(¢) so that vo = —Asin(¢).

(The last computation assumes that w # 0.) Adding the squares of the two initial
conditions, we find

Y2 +v2 = A%cos?(¢) + A%sin?(¢) = A2,
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so that necessarily
A=\/y? + vl

Dividing the two solutions, we find

v _ —Asin(9)

= tan(¢).

yo  Acos(o)

Now, solving the last equation for ¢ is a little subtle. The solution depends on the
signs of yo and vy.

The solution is

arctan (—Z—O) +3, %>0, —uyu>0

%7 Yo = 07 —vg > 0
Q= arctan(—Z—g) , Yo >0, —v9>0.
_%7 Yo = 07 —Vp < 0

arctan(—Z—g) -5, %<0, —vy<0

With these choices of A and ¢, the function A cos(wt+ ¢) satisfies the initial conditions
d
y(0) =0, (0) = vow.

By part ii), the functions A cos(wt+ ¢) are solutions for any A and ¢, and so we obtain
a map

2

d
{Functions of form A cos(wt + ¢)} — {Solutions of Eg +wy = O}

Because any initial condition may be realized by some choice of A and ¢, it follows
that this map is surjective.

(The vector space of solutions is isomorphic to R?, with one isomorphism given by
do
To: > (00, ().

where ¢ is a solution of d?y/dt? + w?y = 0. So, if any initial condition may be realized by a function
of the form A cos(wt + ¢), it follows that the composition

dr?

2
{Functions of form A cos(wt + ¢)} — {Solutions ¢ of dy +wly = O} — {(¢(O), %(O))}

is surjective. It then follows that the first map is also surjective.)

iv) The amplitude A scales the graph of Acos(wt + ¢) vertically.



A=s1
A=05
A=-1

In terms of the simple harmonic oscillator, the y-coordinate of the motion oscillates
between +A and —A.

The frequency changes how often the graph of A cos(wt + ¢) oscillates.

/TN

The phase shifts the graph of A cos(wt + ¢) horizontally.

The blue graph is has ¢ = 7/4 (the graph is shifted left) and the red graph has ¢ = -7 /4
(the graph is shifted right).



