
Mthe 237 — Problem Set 04 Solutions

1. Solve the following differential equations.

i)
dy

dt
+ 2017y = 0, y(0) = 5.

ii)
d2y

dt2
− 10

dy

dt
+ 21y = 0, y(0) = 5,

dy

dt
(0) = 19.

iii)
d2y

dt2
− 6

dy

dt
+ 25y = 0, y(0) = 1,

dy

dt
(0) = 15.

iv)
d2y

dt2
+ 8

dy

dt
+ 16y = 0, y(0) = 1,

dy

dt
(1) = 10.

v)
d6y

dt6
− y = 0. (It is sufficient to find a basis for the space of solutions.)

Solution. i) The characteristic polynomial is χ(z) = z + 2017. This has a single real root
at z = −2017. Therefore, a basis of solutions is

{e−2017t}.

Elements of the solution space have the form

c e−2017t, c ∈ R.

Imposing the initial condition y(0) = 5, we find

c e0 = 5 so c = 5.

The solution is
5e−2017t, t ∈ R.

ii) The characteristic polynomial is χ(z) = z2 − 10z + 21 = (z − 3)(z − 7). This has two
distinct real roots. Therefore, a basis of solutions is

{e3t, e7t}.

Elements of the solution space have the form

c1e
3t + c2e

7t, c1, c2 ∈ R.

Imposing the initial conditions,

c1e
0 + c2e

0 = 5,

3c1e
0 + 7c2e

0 = 19.

So that

c1 + c2 = 5,

3c1 + 7c2 = 19.
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Subtracting three times the first equation from the second, we obtain 4c2 = 4, so c2 = 1,
and so, from the first equation, c1 = 4.

The solution is
4e3t + e7t, t ∈ R.

iii) The characteristic polynomial is χ(z) = z2 − 6z + 25. Using the quadratic formula, we
find that the roots are

6 ±
√

62 − 4 ⋅ 25

2
=

6 ±
√
−64

2
= 3 ± 4i.

A basis of solutions is
{e3t cos(4t), e3t sin(4t)}.

Elements of the space of solutions look like

c1e
3t cos(4t) + c2e

3t sin(4t) = e3t(c1 cos(4t) + c2 sin(4t)), c1, c2 ∈ R.

The derivative of such a solution is

3e3t(c1 cos(4t)+c2 sin(4t))+e3t(−4c1 sin(4t)+4c2 cos(4t)) = e3t((3c1+4c2) cos(4t)+(3c2−4c1) sin(4t)).

Imposing the initial conditions,

e0(c1 cos(0) + c2 sin(0)) = 1,

e0((3c1 + 4c2) cos(0) + (3c2 − 4c1) sin(0)) = 15,

so that

c1 = 1,

3c1 + 4c2 = 15.

Therefore, c1 = 1 and 4c2 = 12, so that c2 = 3.

The solution is
e3t (cos(4t) + 3 sin(4t)) , t ∈ R.

iv) The characteristic polynomial is χ(z) = z2 + 8z + 16 = (z + 4)2. This has a real double
root at z = −4. Therefore, a basis of solutions is

{e−4t, te−4t}.

The elements of the space of solutions look like

c1e
−4t + c2te−4t, c1, c2 ∈ R.

The derivative of a solution is

−4c1e
−4t + c2(e−4t − 4te−4t) = (−4c1 + (1 − 4t)c2)e

−4t.
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Imposing the initial conditions,

c1e
0 + c2 ⋅ 0 = 1,

(−4c1 + (1 − 4)c2)e
−4 = 10.

Therefore, c1 = 1 and c2 = −(10e4 + 4)/3. The solution is

e−4t −
10e4 + 4

3
te−4t, t ∈ R.

v) The characteristic polynomial χ(z) = z6 − 1. The roots are the sixth roots of unity,
which are, as discussed in lecture, of the form exp (i2πk6 ) , k = 0,1, . . . ,5.

Writing out the sixth roots of unity,

exp (0) , exp(i
2π

6
) , exp(i

4π

6
) , exp(i

6π

6
) , exp(i

8π

6
) , exp(i

10π

6
) .

These expressions simplify to

1, exp(i
π

3
) , exp(i

2π

3
) , exp(iπ) = −1, exp(i

4π

3
) , exp(i

5π

3
) .

By Euler’s formula, these are equal to (using the facts that cos(π/3) = 1/2 and
sin(π/3) =

√
3/2)

1,
1 + i

√
3

2
,
−1 + i

√
3

2
, −1,

−1 − i
√

3

2
,

1 − i
√

3

2
.

There are two distinct real roots at z = 1 and z = −1, as well as two conjugate pairs of
complex roots. A basis for the space of solutions is given by

{et, e−t, et/2 cos(

√
3

2
t) , et/2 sin(

√
3

2
t) , e−t/2 cos(

√
3

2
t) , e−t/2 sin(

√
3

2
t)} .

2. In each of the following, find a linear homogeneous differential equation with constant
coefficients with the given functions as a basis for its space of solutions.

i) φ1(t) = et, φ2(t) = e2t.

ii) φ1(t) = et, φ2(t) = e2t, φ3(t) = e3t.

iii) φ1(t) = e−kt, φ2(t) = t e−kt, φ3(t) = e2t, where k is a real number.

iv) φ1(t) = eσt cos(ωt), φ2(t) = eσt sin(ωt), where σ and ω ≠ 0 are real numbers.

v) φ1(t) = 1, φ2(t) = t, φ3(t) = t2, φ4(t) = e−t cos(t), φ5(t) = e−t sin(t).
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Solution. i) The characteristic polynomial should have two distinct real roots at z = 1
and z = 2, so should be equal to

χ(z) = (z − 1)(z − 2) = z2 − 3z + 2.

The corresponding differential equation is

d2y

dt2
− 3

dy

dt
+ 2y = 0.

ii) The characteristic polynomial should have three distinct real roots at z = 1, z = 2 and
z = 3, so should be equal to

χ(z) = (z − 1)(z − 2)(z − 3) = (z2 − 3z + 2)(z − 3) = z3 − 6z2 + 11z − 6.

The corresponding differential equation is

d3y

dt3
− 6

d2y

dt2
+ 11

dy

dt
− 6y = 0.

iii) The characteristic polynomial should have a double root at z = −k, and a single root
at z = 2. So, it should be equal to

χ(z) = (z + k)2(z − 2) = (z2 + 2kz + k2)(z − 2) = z3 + 2(k − 1)z2 + k(k − 4)z − 2k2.

The corresponding differential equation is

d3y

dt3
+ 2(k − 1)

d2y

dt2
+ k(k − 4)

dy

dt
− 2k2y = 0.

iv) The characteristic polynomial should have roots at z = σ + iω and z = σ − iω, so should
be equal to

χ(z) = (z − (σ + iω))(z − (σ − iω)) = z2 − 2σz + (σ2 + ω2).

The corresponding differential equation is

d2y

dt2
− 2σ

dy

dt
+ (σ2 + ω2)y = 0.

v) The characteristic polynomial should have a triple root at z = 0, and a pair of complex
roots z = −1 ± i.

χ(z) = z3(z − (−1 + i))(z − (−1 − i)) = z3(z2 + 2z + 2) = z5 + 2z4 + 2z3.

The corresponding differential equation is

d5y

dt5
+ 2

d4y

dt4
+ 2

d3y

dt3
= 0.
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3. By comparing the real and imaginary parts of the identity

ei(θ+φ) = eiθeiφ,

show the angle addition identities for sin and cos:

sin(θ + φ) = sin(θ) cos(φ) + cos(θ) sin(φ), and

cos(θ + φ) = cos(θ) cos(φ) − sin(θ) sin(φ).

Solution. By Euler’s formula, the left-hand side is

ei(θ+φ) = cos(θ + φ) + i sin(θ + φ).

The right-hand side is

(cos(θ)+i sin(θ))(cos(φ)+i sin(φ)) = cos(θ) cos(φ)+i cos(θ) sin(φ)+i sin(θ) cos(φ)−sin(θ) sin(φ).

Comparing the real and imaginary parts of the two sides, we see that

cos(θ + φ) = real part of ei(θ+φ) = cos(θ) cos(φ) − sin(θ) sin(φ)

and
sin(θ + φ) = imaginary part of ei(θ+φ) = cos(θ) sin(φ) + sin(θ) cos(φ).

4 (Simple harmonic motion). Consider a mass hanging on a spring with spring constant k.
After an initial stretch of the spring to balance the force of gravity, the mass will hang at
rest. Choose a coordinate system such that the y-axis is aligned with the spring, and such
that the rest point of the mass is at y = 0.

If the mass is moved a distance y from y = 0, it will be acted on by a restoring force due
do the spring, given by Hooke’s law: Frestoring = −ky. In the absence of other forces (such as
damping), the motion of the mass is described by

m
d2y

dt2
= −ky (Newton’s second law),

or, bringing to standard form for a linear equation,

d2y

dt2
+ ω2y = 0, where ω2 = k/m. (1)

i) Find the roots of the characteristic polynomial of (1), and conclude that φ1(t) = cos(ωt)
and φ2(t) = sin(ωt) are a basis for the space of solutions of (1).

ii) Check that for real numbers A ≥ 0 and φ ∈ (−π,π], the function

A cos(ωt + φ),

is a solution of (1). Therefore, we have

A cos(ωt + φ) = c1 cos(ωt) + c2 sin(ωt)

for some real numbers c1, c2. Find c1 and c2 in terms of A and φ. (Suggestion: Expand

cos(ωt + φ) using the angle addition identity, and make use of the fact that any vector is expressed

uniquely as a linear combination of basis elements.)
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iii) Find A and φ so that the function A cos(ωt+φ) is a solution of (1) with initial conditions

y(0) = y0,
dy

dt
(0) = v0ω.

Conclude that any solution of (1) may be written in the form A cos(ωt + φ).

iv) The parameters ω, A and φ are called the frequency, amplitude and phase of the motion,
respectively. Briefly describe (with sketches, if possible) how the graph of A cos(ωt+φ)
depends on these three parameters.

Solution. i) The characteristic polynomial of (1) is χ(z) = z2 + ω2 = (z + iω)(z − iω).
This has two complex roots at ±iω, so by the general procedure for solving linear
homogeneous differential equations with constant coefficients the two claimed functions
are a basis of the space of solutions.

ii) Differentiating twice, we find

d

dt
A cos(ωt + φ) = −Aω sin(ωt + φ)

d2

dt2
A cos(ωt + φ) = −Aω2 cos(ωt + φ).

Therefore,
d2A cos(ωt + φ)

dt2
+ ω2A cos(ωt + φ) = 0,

so that A cos(ωt + φ) is a solution of equation (1).

Expanding cos(ωt + φ) using the cosine angle-addition identity from question 3, we
have

cos(ωt + φ) = cos(ωt) cos(φ) − sin(ωt) sin(φ).

Therefore,
A cos(ωt + φ) = A cos(φ) cos(ωt) −A sin(φ) sin(ωt),

so that
c1 = A cos(φ) and c2 = −A sin(φ).

iii) Differentiating, we have

d

dt
A cos(ωt + φ) = −Aω sin(ωt + φ).

Therefore, we are looking for A and φ so that

y0 = y(0) = A cos(0 + φ) = A cos(φ),

v0ω =
dy

dt
(0) = −Aω sin(φ) so that v0 = −A sin(φ).

(The last computation assumes that ω ≠ 0.) Adding the squares of the two initial
conditions, we find

y20 + v
2
0 = A

2 cos2(φ) +A2 sin2(φ) = A2,

6



so that necessarily

A =
√
y20 + v

2
0.

Dividing the two solutions, we find

−
v0
y0

= −
−A sin(φ)

A cos(φ)
= tan(φ).

Now, solving the last equation for φ is a little subtle. The solution depends on the
signs of y0 and v0.

The solution is

φ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan (−v0y0) +
π
2 , y0 > 0, −v0 > 0

π
2 , y0 = 0, −v0 > 0

arctan (−v0y0) , y0 > 0, −v0 > 0

−π2 , y0 = 0, −v0 < 0

arctan (−v0y0) −
π
2 , y0 < 0, −v0 < 0

.

With these choices of A and φ, the function A cos(ωt+φ) satisfies the initial conditions

y(0) = y0,
dy

dt
(0) = v0ω.

By part ii), the functions A cos(ωt+φ) are solutions for any A and φ, and so we obtain
a map

{Functions of form A cos(ωt + φ)} Ð→ {Solutions of
d2y

dt2
+ ω2y = 0}

Because any initial condition may be realized by some choice of A and φ, it follows
that this map is surjective.

(The vector space of solutions is isomorphic to R2, with one isomorphism given by

Ψ0 ∶ φ↦ (φ(0),
dφ

dt
(0)) ,

where φ is a solution of d2y/dt2 + ω2y = 0. So, if any initial condition may be realized by a function
of the form A cos(ωt + φ), it follows that the composition

{Functions of form A cos(ωt + φ)} Ð→ {Solutions φ of
d2y

dt2
+ ω2y = 0} Ð→ {(φ(0),

dφ

dt
(0))}

is surjective. It then follows that the first map is also surjective.)

iv) The amplitude A scales the graph of A cos(ωt + φ) vertically.
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A = 2

A = 1

A = 0.5

A = −1

In terms of the simple harmonic oscillator, the y-coordinate of the motion oscillates
between +A and −A.

The frequency changes how often the graph of A cos(ωt + φ) oscillates.

ω = 2

ω = 1

ω = 0.5

The phase shifts the graph of A cos(ωt + φ) horizontally.

The blue graph is has φ = π/4 (the graph is shifted left) and the red graph has φ = −π/4
(the graph is shifted right).
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