
Mthe 237 — Problem Set 03 Solutions

1. i) Check that the differential equation (y2+y)−x dy
dx = 0 is not exact. Now, multiplying

both sides by µ(x, y) = y−2 yields the differential equation (1 + 1
y) −

x
y2

dy
dx = 0. Check

that the latter is exact (for y ≠ 0).
If a differential equation that is not exact is converted to one that is exact by multiplying
both sides of the equation by a function µ(x, y), as in the example of i), the function µ(x, y)
is called an integrating factor.

Solutions of the equation multiplied by µ are also solutions of the original equation, as
long as we avoid regions where µ is zero.

Although in principle an integrating factor exists for every equation of the form

M(x, y) +N(x, y)
dy

dx
= 0, (1)

in practice an integrating factor is frequently hard to find, and there is no known general
method for finding it.

One approach to trying to find an integrating factor is to guess that it has a special simple
form, and try your luck. For example, suppose we guessed that the differential equation (1)
has an integrating factor µ(x) that is a function of x only, so that

µ(x)M(x, y) + µ(x)N(x, y)
dy

dx
= 0

is now exact.

ii) Show that the exactness condition

∂(µ(x)M(x, y))

∂y
=
∂(µ(x)N(x, y))

∂x

may be rearranged to

1

µ

dµ

dx
=

∂M
∂y −

∂N
∂x

N
. (2)

If the right side of eq. (2) is a function of x only, then eq. (2) is separated equation
for µ(x), which we can solve by the usual method for separated equations (integrating
both sides).

iii) The equation (ex − sin(y)) + cos(y) dy
dx = 0 is not exact, but has an integrating factor

that may be found by the above method. Find it.

iv) Check that for the equation xy2 +x dy
dx = 0, the expression

∂M
∂y −

∂N
∂x

N
is not a function of

x only. Therefore, the above method does not yield an integrating factor.

Other common guesses for the form of an integrating factor are µ(y), µ(xy), µ(x/y), µ(y/x).
Each, in lucky cases, leads to a separable differential equation for µ.1 However, all five may

1For instance, µ(xy) = 1/(xy(1 − xy)) works for the equation of part iv).
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fail to yield an integrating factor. Because there is no known general method of finding
integrating factors, their usefulness is limited.

The idea of integrating factors does lead to a general method of solving first-order linear
equations, however, which we shall cover in detail in lecture!

Solution. i) We compute that for the differential equation (y2 + y) − x dy
dx = 0,

∂M

∂y
= 2y + 1,

∂N

∂x
= −1.

Because the two partials are not equal in any open rectangle, the equation (y2 + y) −
x dy

dx = 0 is not exact.

On the other hand, for (1 + 1
y) −

x
y2

dy
dx = 0, we have

∂M

∂y
= −

1

y2
,

∂N

∂x
= −

1

y2
.

The two partials are equal for y > 0 and y < 0. We conclude that on either of these two
open rectangles the equation is exact .

ii) We have

∂ (µ(x)M)

∂y
= µ

∂M

∂y
,

∂ (µ(x)N)

∂x
=
dµ

dx
N + µ

∂N

∂x
.

Setting the two partials equal to each other,

µ
∂M

∂y
=
dµ

dx
N + µ

∂N

∂x
, so that

dµ

dx
N = µ(

∂M

∂y
−
∂N

∂x
) , and

1

µ

dµ

dx
=

∂M
∂y −

∂N
∂x

N
.

iii) For the equation (ex − sin(y)) + cos(y) dy
dx = 0, we have

∂M

∂y
= − cos(y),

∂N

∂x
= 0,

N = cos(y), and
∂M
∂y −

∂N
∂x

N
=
− cos(y) − 0

cos(y)
= −1.
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The expression is constant with x and y, and so in particular a function of x only.

The separated equation for µ is
1

µ

dµ

dx
= −1. (3)

Integrating both sides, solutions are given implicitly by

∫
dµ

µ
= ∫ −1dx,

so that
ln(∣µ∣) = −x.

We have taken C = 0, because we are not looking for the most general integrating
factor. Any solution of equation (3) will do. Finally, exponentiating both sides, we
have

µ(x) = e−x

as the integrating factor.

The converted exact equation is then

(1 − e−x sin(y)) + e−x cos(y) = 0.

This can be checked to be exact — ∂M/∂y = ∂N/∂x = −e−x cos(y). Solutions are given
implicitly by

x + e−x sin(y) = C.

iv) For the equation xy2 + x dy
dx = 0, we have

∂M

∂y
= 2xy,

∂N

∂x
= 1,

N = x, and
∂M
∂y −

∂N
∂x

N
=

2xy − 1

x
,

which is not a function of x only.

2. i) Check that

W (et, tet, t2et)(t) = det
⎛
⎜
⎝

et tet t2et

(et)′ (tet)′ (t2et)′

(et)′′ (tet)′′ (t2et)′′

⎞
⎟
⎠
= 2e3t, t ∈ R,

and conclude that {et, tet, t2et} is a linearly independent subset of C∞(R, R).
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ii) Show that if
α1 e

t + α2 te
t + α3 t

2et = 0

for all t ∈ R, then α1 = α2 = α3 = 0 (give a direct argument avoiding the use of
Wronskians). This gives another argument that {et, tet, t2et} is a linearly independent
subset of C∞(R, R).

Solution. i) First, we compute the derivatives involved.

(et)′ = et and (et)′′ = et,
(tet)′ = et + tet = (1 + t)et and (et)′′ = et + (1 + t)et = (2 + t)et,

(t2et)′ = 2tet + t2et = (2t + t2)et and (t2et)′′ = (2 + 2t)et + (2t + t2)et = (2 + 4t + t2)et.

Now, the Wronskian is

det
⎛
⎜
⎝

et tet t2et

et (1 + t)et (2t + t2)et

et (2 + t)et (2 + 4t + t2)et

⎞
⎟
⎠
= (et)3 det

⎛
⎜
⎝

1 t t2

1 1 + t 2t + t2

1 2 + t 2 + 4t + t2

⎞
⎟
⎠
.

We can simplify the computation by subtracting the first row from both the second
and the third row (this does not change the determinant), obtaining

e3t det
⎛
⎜
⎝

1 t t2

0 1 2t
0 2 2 + 4t

⎞
⎟
⎠
.

Expanding the result along the first column, the Wronskian is equal to

e3t det(
1 2t
2 2 + 4t

) = e3t (2 + 4t − 4t) = 2e3t.

Because
W (et, tet, t2et)(t) ≠ 0 for all t,

we conclude that {et, tet, t2et} is a linearly independent set (it is enough that the
Wronskian does not vanish for a fixed t, but here it does not vanish for all t).

ii) Suppose that
α1 e

t + α2 te
t + α3 t

2et = 0. (4)

Evaluating at t = 0, we have

α1 ⋅ 1 + α2 ⋅ 0 + α3 ⋅ 0 = 0,

so α1 = 0.

Differentiating eq. 4 with respect to t, we have

0 + α2 (1 + t)e
t + α3 (2t + t

2)et = 0.
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Evaluating the result at t = 0, we have

α2 ⋅ 1 + α3 ⋅ 0 = 0,

so α2 = 0.

Differentiating once more, we have

0 + α3(2 + 4t + t2)et = 0.

Evaluating at t = 0, we conclude that α3 = 0.

Alternative solution. Instead, we could have evaluated eq. 4 at two more points, say
t = 1 and t = 2, obtaining the system of equations

α2 e + α3 e = 0

α2 2e2 + α3 4e2 = 0,

or, equivalently,

α2 + α3 = 0

2α2 + 4α3 = 0.

This is easily seen to have solution α2 = α3 = 0. (For instance, we could subtract two times

the first equation from the second, obtaining 2α3 = 0, hence α2 = 0 from the first equation.)

3. Let V andW be finite-dimensional vector spaces. Show that if there exists an isomorphism
L ∶ V →W , then dimV = dimW .

(This fact was needed in the proof that the dimension of the space of solutions of a
homogeneous linear equation is equal to its order. It is a particular case of the principle that
isomorphic vector spaces have identical linear-algebraic properties.)
Suggestion: Let dimV = r. Choose a basis {e1, . . . , er} of V . Show that {L(e1), . . . , L(er)} is a basis of W .

Solution. Following the suggestion, let dimV = r, and choose a basis {e1, . . . , er} of V .

Claim. {L(e1), . . . , L(er)} is a basis of W .

Proof of Claim. By definition of basis, the claim will be shown if we check that {L(e1), . . . , L(er)}
is a linearly independent set, and that it spans all of W .

Suppose that
α1L(e1) +⋯ + αrL(er) = 0

for some α1, . . . , αr. By linearity of L, the left side is equal to L(α1e1 +⋯ + αrer). Because
L is an isomorphism, it is injective, and so the only vector sent to 0 is 0. Thus,

α1e1 +⋯ + αrer = 0.

Because {e1, . . . , er} is a basis of V , it is a linearly independent set. We conclude that
α1 = α2 = ⋯ = αr = 0. Therefore, {L(e1), . . . , L(er)} is a linearly independent set.
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To show that {L(e1), . . . , L(er)} spans W , choose any element w of W . Because L is
an isomorphism, it is surjective, so there exists an element v of V with L(v) = w. Because
{e1, . . . , er} is a basis of V , there exist α1, . . . , αr such that

v = α1e1 +⋯ + αrer.

Applying L, we have

w = L(v) = L(α1e1 +⋯ + αrer) = α1L(e1) +⋯ + αrL(er).

Therefore, w is in the span of {L(v1), . . . , L(vr)}. Since w was arbitrary, {L(v1), . . . , L(vr)}
is a spanning set of W .

We conclude that {L(v1), . . . , L(vr)} is a basis of W .

Because V and W have bases with an equal number of elements, they have equal dimen-
sion.

Alternative solution. The rank-nullity theorem says that for any linear map L ∶ V → W
between finite-dimensional vector spaces2, we have

dim imL + dim kerL = dimV.

(The number dim imL is called the rank of L and the number dim kerL is called the nullity
of L, which explains the name of the theorem.)

When L is an isomorphism,

dim imL = dimW, as L is surjective, and

dim kerL = 0, as L is injective.

Therefore, dimW + 0 = dimV , which is what we wanted to show.

Optional Problem. Let I be the open interval (−1,1). Can you find a function in C0(I, R)
but not C1(I, R)? In C1(I, R) but not C2(I, R)? In Cr(I, R) but not Cr+1(I, R)?
Solution. A function is in C0(I, R) but not C1(I, R) if it continuous over I, but not differ-
entiable (or does not have a continuous derivative) at some points of I.

The first example that comes to mind is the absolute value function,

φ(t) = ∣t∣ =

⎧⎪⎪
⎨
⎪⎪⎩

t, 0 ≤ t < 1

−t, −1 < t < 0

It is continuous, not differentiable at t = 0.
Now, by the fundamental theorem of calculus, if f(t) is continuous over an open interval

I, then the function F (t) defined by

F (t) = ∫
t

t0
f(x)dx, t0 ∈ I

2Actually, W may be infinite-dimensional.
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is differentiable on I, with derivative F ′(t) = f(t). Since f is continuous on I, we see that
F has a continuous derivative on I.

Iterating this construction r times with f being the absolute value function, we obtain a
function in Cr(I,R), but not in Cr+1(I,R):

φr(t) = ∫
t

−1
⋯∫

t

−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r integrals

∣x1∣ dx1 dx2⋯dxr.

Explicitly, the first few iterations produce

φ0(t) = ∣t∣ ,

φ1(t) =
1 + t ∣t∣

2
,

φ2(t) =
2 + 3t + t2 ∣t∣

6
.

Now, we notice that some of the terms produced by the procedure above are not essen-
tial for making sure a function only has derivatives up to a certain order. Discarding the
inessential terms then leads us to the following family of examples:

φr(t) =
tr ∣t∣

(r + 1)!
,

where r! = 1 ⋅ 2 ⋅ 3⋯(r − 1) ⋅ r and, by convention, 0! = 1.

Claim. We have
d

dt
φr(t) = φr−1(t) for all r ≥ 1.

Proof of Claim. For t > 0, we have

φr(t) =
tr ⋅ t

(r + 1)!
, so

d

dt
φr(t) = (r + 1)

tr

(r + 1)!
=
tr

r!
=
tr−1 ⋅ ∣t∣
r!

= φr−1(t).

For t < 0, we have

φr(t) =
tr ⋅ −t

(r + 1)!
, so

d

dt
φr(t) = −(r + 1)

tr

(r + 1)!
= −

tr

r!
=
tr−1 ⋅ ∣t∣
r!

= φr−1(t).

For t = 0, we proceed from the definition of derivative:

lim
h→0

φr(0 + h) − φr(0)

h
=

hr ∣h∣
(r+1)!
h

= lim
h→0

hr−1 ∣h∣
(r + 1)!

= 0 = φr−1(0).

Since φ0(t) = ∣t∣ is not differentiable, we see that φr is r-times differentiable, but not
r + 1-times differentiable, as desired.
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