
Mthe 237 — Problem Set 02 Solutions

1. Solve the following differential equations.
(Hand-in only the starred problems, but please attempt them all. Solutions can be left in implicit form. The

integral ∫
dx

1 + x2
= arctan(x) may be useful. There are suggestions at the bottom of p. 2, but try solving

without looking at the suggestions first.)

i) (3x2y + 8xy2) + (x3 + 8x2y + 12y2)dy
dx

= 0, y(1) = 0.

ii)∗
dy

dx
= x2 + 2xy + y2, y(0) = 0.

iii)∗ (x − y)dy
dx

= (x + y), y(1) = 0.

iv) (x − y − 1)dy
dx

= (x + y + 1), y(1) = −1.

v)
dy

dx
= ex+y, y(0) = 0.

vi)
x√

x2 + y2
+ y√

x2 + y2
dy

dx
= 0, y(1) = 0.

vii)∗ (x − 2xy + ey) + (y − x2 + xey)dy
dx

= 0, y(0) = 1.

viii) x
dy

dx
= xey/x + y, y(1) = 0.

Solution. i) Suspecting the equation is exact, we check that ∂M/∂y = ∂N/∂x:

∂M/∂y = 3x2 + 16xy,

∂N/∂x = 3x2 + 16xy + 0.

Since M,N,∂M/∂y and ∂N/∂x are all continuous on R2, and we have the equality
∂M/∂y = ∂N/∂x, the equation is exact.

Integrating M(x, y) = 3x2y + 8xy2 with respect to x, we get

x3y + 4x2y2 + h(y).

Taking the partial with respect to y, we get

x3 + 8x2y + h′(y).

Comparing with N(x, y), we see that

h′(y) = 12y2,
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so that
h(y) = 4y3 +C.

Implicit solutions to the equation are therefore level curves

x3y + 4x2y2 + 4y3 = C.

To find C, we apply the initial condition—

13 ⋅ 0 + 4 ⋅ 12 ⋅ 02 + 4 ⋅ 03 = C,

so that C = 0 and the solution is given implicitly by

x3y + 4x2y2 + 4y3 = 0.

ii) As a preliminary step, we factor the right side: x2 + 2xy + y2 = (x + y)2. This suggests
the change of variable v(x) = x + y(x). Solving for y in terms of x and v, we have

y = v − x, dy

dx
= dv
dx
− 1,

The equation rewritten in terms of v and x is

(dv
dx
− 1) = v2,

dv

dx
= v2 + 1,

which is now separable.

1

v2 + 1

dv

dx
= 1.

Integrating both sides, solutions are given implicitly by

∫
dv

v2 + 1
= x +C.

The integral on the left is arctan(v). Applying tan to both sides, we have

v = tan(x +C).

Rewriting in terms of y, we have

x + y = tan(x +C),

so that
y(x) = tan(x +C) − x.

Applying the initial condition, we find that C = 0, so that the solution is

y(x) = tan(x) − x, −π/2 < x < π/2.

The restrictions on the domain arise from the requirement that solutions be continuous
functions, and the non-removable discontinuities of tan at x = π/2 + kπ, k an integer.

2



iii) This equation is homogeneous. We use the standard change of variable v(x) = y(x)/x.
The induced initial condition is v(1) = 0/1 = 0. We need to restrict to x > 0 for this
change of variable. We have, as usual,

y = vx, dy

dx
= v + xdv

dx
.

Rewriting the equation in terms of x and v,

(x − xv) (v + xdv
dx
) = (x + xv),

x(1 − v) (v + xdv
dx
) = x(1 + v),

v + xdv
dx

= 1 + v
1 − v ,

x
dv

dx
= 1 + v

1 − v − v,

x
dv

dx
= 1 + v − v + v2

1 − v = 1 + v2
1 − v ,

so that we have the separated equation

1 − v
1 + v2

dv

dx
= 1

x
.

Integrating the left side, we have

∫
1 − v
1 + v2 dv = ∫

dv

1 + v2−∫
v

1 + v2 dv = arctan(v)−1

2
ln(1+v2) = arctan(v)−ln(

√
1 + v2),

so that the implicit solutions are given by

arctan(v) − ln(
√

1 + v2) = ln(∣x∣) +C.

Since v(1) = 0 is the initial condition, we see that C = 0. Rewriting in terms of x and
y, we obtain the implicit solution

arctan(y/x) − ln(
√

1 + (y/x)2) = ln(x), x > 0.

iv) This equation looks very similar to the previous one. We make the change-of-variable
v = y + 1, v(1) = y(1) + 1 = −1 + 1 = 0 so that

y = v − 1,
dy

dx
= dv
dx
.

and the equation becomes

(x − v) dv
dx

= x + v, v(1) = 0.
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This equation was solved in problem iii), the implicit solution is

arctan(v/x) − ln(
√

1 + (v/x)2) = ln(x), x > 0.

Rewriting in terms of x and y, we have

arctan((y + 1)/x) − ln(
√

1 + ((y + 1)/x)2) = ln(x), x > 0

as the implicit solution.

v) This is separable, since ex+y = exey! We have

e−y
dy

dx
= ex.

Integrating both sides,
−e−y = ex +C.

The initial condition is y(0) = 0, so −1 = 1+C, which implies that C = −2. The implicit
solution is

ex + e−y = 2.

vi) This equation is exact. We have:

∂M/∂y = (−1/2) x

(x2 + y2)3/2 2y = − xy

(x2 + y2)3/2 ,

∂N/∂x = (−1/2) y

(x2 + y2)3/2 2x = − xy

(x2 + y2)3/2 .

Integrating M(x, y) = x√
x2+y2 with respect to x, we have

√
x2 + y2 + h(y).

Taking the partial with respect to y, we have

y√
x2 + y2

+ h′(y).

Comparing with N(x, y), we see that h′(y) = 0, so that h(y) = C. The implicit solutions
are √

x2 + y2 = C.
From the initial condition y(1) = 0, we see that C = 1, so that the implicit solution is

√
x2 + y2 = 1.

vii) Testing for exactness, we compute

∂M/∂y = −2x + ey,
∂N/∂x = −2x + ey.
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The partials agree and M,N,∂M/∂y and ∂N/∂x are continuous on R2, so we conclude
that the equation is exact.

Integrating with M(x, y) = x − 2xy + ey with respect to x, we have

1

2
x2 − x2y + xey + h(y).

Taking the partial with respect to y, we get

−x2 + xey + h′(y).

Comparing with N(x, y) = y − x2 + xey, we see

h′(y) = y, so h(y) = 1

2
y2 +C.

Implicit solutions are
1

2
(x2 + y2) − x2y + xey = C.

The initial condition implies that C = 1/2, so the implicit solution is

1

2
(x2 + y2) − x2y + xey = 1

2
.

viii) The equation is homogeneous (the term ey/x is fairly sneaky). Applying the usual
change of variable v = y/x, v(1) = 0/1 = 0, and

y = vx, dy

dx
= v + xdv

dx
,

the equation becomes

x(v + xdv
dx
) = xevx/x + vx,

v + xdv
dx

= ev + v,

x
dv

dx
= ev.

Separating variables,

e−v
dv

dx
= 1

x
.

Integrating,
−e−v = ln(∣x∣) +C.

Using the initial condition v(1) = 0, we see that C = −1. The implicit solution is

ln(x) + e−v = 1.

Rewriting in terms of x and y, we get

ln(x) + e−y/x = 1, x > 0.
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2. For each of the following differential equations, is existence of a solution in some nonempty
open interval about x0 implied by the Existence and Uniqueness Theorem for First-Order
Ordinary Differential Equations? If so, is uniqueness?

i)
dy

dx
= x2 + 2xy + y2, y(0) = 0.

ii)
dy

dx
= 1

x2 + y2 + 1
, y(0) = 1.

iii)
dy

dx
= y1/5, y(1) = 1.

iv)
dy

dx
= y1/5, y(2) = 0.

Solution. i) The functions

F (x, y) = x2 + 2xy + y2,
∂F

∂y
(x, y) = 2x + 2y

are polynomials in x and y, and are therefore continuous on all of R2. By the Existence-
Uniqueness theorem, a unique solution through (0,0) exists in a (nonempty) open
interval about x = 0.

ii) The functions

F (x, y) = 1

x2 + y2 + 1
,

∂F

∂y
(x, y) = − 2y

(x2 + y2 + 1)2

are continuous on all of R2. By the Existence-Uniqueness theorem, a unique solution
through (0,1) exists in a (nonempty) open interval about x = 0.

iii) The functions are

F (x, y) = y1/5,
∂F

∂y
(x, y) = 1

5
y−4/5.

F (x, y) is continuous on all of R2; ∂F /∂y is not defined for y = 0 and is continuous
elsewhere.

We can choose a small rectangle containing (1,1) that does not intersect the line y = 0.
Therefore, both parts of the existence and uniqueness theorem apply. There exists a
unique solution through (1,1) in a (nonempty) open interval about x = 1.

iv) The same functions as part iii). Existence part of the theorem applies, but the solution
may not be unique, because any rectangle containing (2,0) will contain points of
discontinuity of y−4/5 (which are, as explained in the previous part, along the line
y = 0).
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3. In this problem, we look at water flowing out of a container through an opening at its
bottom.

Let h(t) denote the height of the water level above the bottom of the container at time
t, let A(t) denote the area of the top surface of the water at time t, and let a denote the
cross-sectional area of the opening at the bottom. It follows from conservation of energy
(Torricelli’s principle) that

A(t) dh
dt
(t) = −a

√
2g h(t), (1)

where g is the gravitational constant.
Consider three possible containers—

i) Solve eq. (1) for a cylindrical container of height h0 with cross-sectional area A (so
that A(t) = A is a constant function) that is standing upright (that is, on the circular
face that has the opening). The initial condition is that the container is full at t = 0,
so that h(0) = h0.

ii) Now consider a circular cone of height h0 and with diameter 2h0 across the top, standing
upright on its vertex. Using similar triangles, argue that A(t) = πh(t)2. Then, solve
eq. (1) with initial condition h(0) = h0.

iii) A paraboloid of revolution is the surface obtained by rotating the graph of the function
y(x) = x2 about the y-axis. For a container of height h0 in the shape of a paraboloid
of revolution, find a relationship between A(t) and h(t), and solve eq. (1). The initial
condition is once again h(0) = h0.

iv) In terms of h0, how much time does it take for each of the three containers to completely
empty out?

v) Supposing a
√

2g = 1 and h0 = 1, sketch a plot of h(t) versus t for each of the three
containers (you may need to use a plotting program for this).

Solution. i) The equation is separable. Separating variables, we get

Ah−1/2
dh

dt
= −a
√

2g

Integrating both sides, we find

2Ah1/2 = −a
√

2g t +C.

Solving for h as a function of t,

h(t) = (C − a
A

√
g

2
t)

2

.

The initial condition is h(0) = h0. This implies that C =
√
h0, and the function we are

looking for is

h(t) = (
√
h0 −

a

A

√
g

2
t)

2

, 0 ≤ t < A
a

√
2

g

√
h0.
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The restrictions on the domain of t come from physical considerations: the water level
should not overflow the tank, and cannot be negative (the strict inequality in the upper
bound comes from the process of separating variables, since we divided by h1/2).

ii) Here is a sketch of a vertical cross-section of the container:

2h0

h0

h0

h(t)

r(t)

A

B C

D E

The trianges ABC and ADE are similar. Denoting the radius of the circle of the
cross-section at height h(t), we see that

r(t)
h(t) =

h0
h0

= 1, so r(t) = h(t).

Applying the formula for the area of a circle in terms of its radius, we find that
A(t) = πh(t)2. Eq. 1 becomes

πh3/2
dh

dt
= −a
√

2g.

Integrating both sides,
2π

5
h5/2 = C − a

√
2g t.

Solving for h as a function of t and applying the initial condition,

h(t) = (h5/20 −
5a

2π

√
2g t)

2/5
, 0 ≤ t < 2πh

5/2
0

5a
√

2g
.

iii) Again, we sketch a vertical cross-section of the container:
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h0

h(t)

r(t)

At height h(t), the radius r(t) of the horizontal cross-section of the container is equal to√
h(t). To see this, notice that the point (r(t), h(t)) lies on the graph of the parabola

y = x2. So, h(t) = r(t)2 and r(t) =
√
h(t). Therefore, A(t) = πh(t). Eq. 1 becomes

πh1/2
dh

dt
= −a
√

2g.

Integrating both sides,
2π

3
h3/2 = C − a

√
2g t.

Solving for h as a function of t and applying the initial condition,

h(t) = (h3/20 −
3a

2π

√
2g t)

2/3
, 0 ≤ t < 2πh

3/2
0

3a
√

2g
.

iv) t = A
a

√
2
g

√
h0, t = 2πh

5/2
0

5a
√
2g

and t = 2πh
3/2
0

3a
√
2g

, respectively.

v) We take A = 1/2 for the plot of the cylindrical container.

t

h(t)

Cylinder

Cone

Paraboloid

9



Optional Problem. The purpose of this question is to prove that the differential equation
dy/dx = x + y is not separable. (As a reminder, a differential equation is separable if it can
be written in the form n(y)dy/dx =m(x), or, equivalently, in the form dy/dx =m(x)/n(y).)

i) Let F (x, y) be a real-valued function of two variables. Show that if F (x, y) =m(x)/n(y)
for some functions m, n of a single variable, then for any real numbers x0, x1, y0, y1
such that the four points (x0, y0), (x0, y1), (x1, y1), (x1, y1) are in the domain of F ,

F (x0, y0)F (x1, y1) − F (x0, y1)F (x1, y0) = 0.

ii) Conclude that F (x, y) = x + y cannot be written in the form F (x, y) =m(x)/n(y).

Solution. i) This is a simple matter of plugging in F (x, y) =m(x)/n(y):

F (x0, y0)F (x1, y1) − F (x0, y1)F (x1, y0) =
m(x0)
n(y0)

m(x1)
n(y1)

− m(x0)
n(y1)

m(x1)
n(y0)

= 0.

ii) Trying the criterion of part i) with the function F (x, y) = x + y, we find

F (x0, y0)F (x1, y1) − F (x0, y1)F (x1, y0) = (x0 + y0)(x1 + y1) − (x0 + y1)(x1 + y0)
= x0x1 + x0y1 + y0x1 + y0y1 − (x0x1 + x0y0 + y1x1 + y1y0)
= x0y1 + y0x1 − x0y0 − x1y1.

Pick x0 = 0, x1 = 1, y0 = 1, y1 = 0. The expression becomes

0 ⋅ 1 + 1 ⋅ 1 − 0 ⋅ 1 − 1 ⋅ 0 = 1 ≠ 0.

Since the criterion of part i) is not met, we can conclude that F (x, y) = x + y cannot
be written in the form F (x, y) =m(x)/n(y).

Suggestions for 1. i) Exact; ii) Factor and try substitution v = x + y; iii) Homogeneous; iv) Substitute to

reduce to iii; v) Separable; vi); Exact; vii) Exact; viii) Homogeneous.
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