
Mthe 237 — Problem Set 01 Solutions

Remark. In the following answers, we explicitly keep track of the restrictions on the domain
of a solution of a differential equation that arise in the process of separating variables. In
future assignments, we will allow ourselves not to keep track of these restrictions. (Students
will not be required keep track of the restrictions, for any homework including the first).

1. For each of the following, find a function y(x) that satisfies the differential equation and
initial condition. Take care to provide the domain of definition of the solution.

i)
dy

dx
= 5y2, y(0) = 1;

ii) x
dy

dx
= 2(y − 9), y(1) = 10;

iii) (x2 + 1)
dy

dx
= xy, y(0) = 1;

iv)
dy

dx
= xy + 2x + y + 2, y(0) = −1;

v) 2xy
dy

dx
= (x2 + y2), y(1) =

√
3.

Solution. i) Separating variables, we have

1

y2
dy

dx
= 5, y ≠ 0.

Because we divided by y2, we have lost the constant solution y(x) = 0. This solution
does not satisfy the initial condition y(0) = 1, however, so we may disregard this solution
and proceed with the algorithm.

By our algorithm, solutions are given implicitly by

∫
dy

y2
= ∫ 5dx.

Doing the integrals, we get

−
1

y
= 5x +C,

so that, solving for y,

y(x) = −
1

5x +C
.

Using the initial condition, we find the particular solution:

1 = y(0) = −
1

5 ⋅ 0 +C
= −

1

C
, so C = −1 and y(x) = −

1

5x − 1
=

1

1 − 5x
.
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Since 1
1−5x has a non-removable discontinuity at x = 1

5 (and is defined and differentiable
elsewhere), the possible domains of the solution are the intervals x < 1

5 and x > 1
5 . The

interval that contains x = 0 is x < 1
5 , so this is the domain of the solution.

Finally, we see that y(x) > 0 for all x < 1
5 , so the requirement that y ≠ 0 puts no additional

restrictions on the domain.

y(x) =
1

1 − 5x
, x <

1

5
.

ii) Separating variables, we have

1

y − 9

dy

dx
=

2

x
, y ≠ 9, x ≠ 0.

Because we have divided by y − 9, we have lost the constant solution y(x) = 9. This
solution does not satisfy the initial condition y(1) = 10, however, so we may disregard this
solution and proceed.

By the algorithm, solutions are given implicitly by

∫
dy

y − 9
= ∫

2

x
dx.

Integrating,
ln(∣y − 9∣) = 2 ln(∣x∣) +C = ln(∣x2∣) +C.

Taking exponentials of both sides,

y − 9 = Cx2 so y(x) = 9 +Cx2.

Using the initial condition to pick out the particular solution,

10 = y(1) = 9 +C ⋅ 12, so C = 1.

The function y(x) = 9 + x2 crosses the restriction y ≠ 9, x ≠ 0 at (0,9), hence we get the
additional restriction x > 0 on the domain.

y(x) = 9 + x2, x > 0.

Remark. For this question, the hypotheses of the existence and uniqueness theorem do not
hold over the y-axis, and in fact there is a two-parameter family of solutions passing through
(0,9).

iii) Separating variables, we have

1

y

dy

dx
=

x

x2 + 1
, y ≠ 0.

Because we have divided by y, we have lost the constant solution y(x) = 0. This solution
does not satisfy the initial condition y(0) = 1, however. We disregard this solution.
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By the algorithm, solutions are given implicitly by

∫
dy

y
= ∫

x

x2 + 1
dx

Integrating,

ln(∣x∣) =
1

2
ln(∣x2 + 1∣) +C = ln(

√
x2 + 1) +C.

(Note that x2 + 1 > 0 for all x, which justifies omitting the absolute value.) Taking exponen-
tials of both sides,

y = C
√
x2 + 1.

To satisfy the initial condition,

1 = y(0) = C
√

02 + 1 = C, so C = 1.

The function y(x) =
√
x2 + 1 is defined and differentiable for all x. Moreover, we have

y(x) > 0 for all x, so the condition y ≠ 0 does not impose any additional restrictions on the
domain of the solution. The solution is

y(x) =
√
x2 + 1, x ∈ R.

iv) As a preliminary step, we notice that the right-hand side factors as

xy + 2x + y + 2 = x(y + 2) + y + 2 = (x + 1)(y + 2).

Therefore, the equation is

dy

dx
= (x + 1)(y + 2), y(0) = −1.

Separating variables, we have

1

y + 2

dy

dx
= x + 1, y ≠ −2.

Dividing by y + 2 lost the constant solution y(x) = −2. However this does not satisfy the
initial condition, so we disregard it.

By the algorithm, solutions are given implicitly by

∫
dy

y + 2
= ∫ x + 1dx.

Integrating,

ln(∣y + 2∣) =
x2

2
+ x +C.

Taking exponentials of both sides,

y + 2 = C e
x2

2
+x, so that y = C e

x2

2
+x − 2.
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To satisfy the initial condition, we need

−1 = Ce0 − 2 = C − 2, so C = 1.

The function y(x) = ex
2/2+x − 2 is defined and differentiable for all x. Moreover, y(x) > −2,

so the condition y ≠ −2 imposes no additional restrictions on the domain of the solution. So
the solution is

y(x) = e
x2

2
+x − 2, x ∈ R.

v) This differential equation is not separable, but it is homogeneous of degree 2. We therefore
make the substitution

y = xv,
dy

dx
= v + x

dv

dx
.

The substitution places the restriction x ≠ 0 on the domain of a solution. The initial condition
y(1) =

√
3 determines an initial condition for v:

√
3 = y(1) = 1 ⋅ v(1) and so v(1) =

√
3.

The equation becomes

2x(xv) (v + x
dv

dx
) = x2 + (xv)2,

2x2v (v + x
dv

dx
) = x2(1 + v2),

2v (v + x
dv

dx
) = 1 + v2,

2v2 + 2xv
dv

dx
= 1 + v2,

2xv
dv

dx
= 1 − v2,

2v

1 − v2
dv

dx
=

1

x
, x ≠ 0, v ≠ ±1.

We have lost the constant solutions v(x) = 1 and v(x) = −1 in dividing by 1 − v2 in the last
step. Neither of these solutions satisfy the initial condition, so we are safe to disregard them.

The equation is now separated, so by our algorithm the solutions are given by

∫
2v

1 − v2
dv = ∫

1

x
dx

Integrating,

− ln(∣1 − v2∣) = ln(∣x∣) +C or ln(∣
1

1 − v2
∣) = ln(∣x∣) +C.

Taking exponentials of both sides, we find

1

1 − v2
= C x, so 1 − v2 =

C

x
and v2 = 1 −

C

x
.

At this stage, we apply the initial condition v(1) =
√

3 to find that

3 = 1 −
C

1
, so C = −2.
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Finally, to convert back to y, we use the definition v = y
x :

(
y

x
)
2

= 1 +
2

x
, so y2 = x2 + 2x.

The conditions v ≠ ±1 on the domain become y ≠ ±x.

Solving for y as a function of x, we have two possibilities

y(x) = ±
√
x2 + 2x.

The branch of the square root that satisfies the initial condition is y(x) =
√
x2 + 2x.

The function
√
x2 + 2x is real-valued when x2 + 2x ≥ 0. The interval containing x = 1 and

satisfing the last inequality is given by x ≥ 0.

(Here is one way of checking this: completing the square, we have x2 + 2x = (x + 1)2 − 1, so

we are looking for x satisfying the condition (x + 1)2 ≥ 1. This condition holds on the intervals

x + 1 ≥ 1 and x + 1 ≤ −1. The value x = 1 satisfies the first inequality, so the condition is x + 1 ≥ 1,

or equivalently x ≥ 0.)

The restriction x ≠ 0 removes the point x = 0 from the domain. Finally, we check that
y(x) > ±x: this is evident as y(x) =

√
x2 + 2x >

√
x2 = x for x > 0.

The solution to the differential equation with the given initial condition is

y(x) =
√
x2 + 2x, x > 0.

2. As we saw in lecture, if the path of a particle described parametrically by (x(t), y(t)), t ∈ I
lies on the graph of a function y(x), then by the chain rule

dy

dt
(t) =

dy

dx
(x(t))

dx

dt
(t),

so that

dy

dx
(x(t)) =

dy
dt (t)
dx
dt (t)

or, written more compactly,
dy

dx
=
ẏ

ẋ
whenever ẋ ≠ 0. (1)

i) The path t ↦ (
√

8 cos(t),
√

2 sin(t)), t ∈ [0,2π) describes an ellipse E. Using (1), find
the slope of the tangent line to E at the point (2,1).

As a reminder, the vector (ẋ(t), ẏ(t)) is called the velocity of the particle at time t.
Suppose that the velocity of a particle is perpendicular to its position for all t ∈ I, and

that the path of the particle lies on the graph of the function y(x). Under these hypotheses:

ii) Show that x(t)ẋ(t) + y(t)ẏ(t) = 0 for all t ∈ I.

iii) Show that y(x) is a solution to the differential equation

y
dy

dx
= −x.
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iv) Conclude that the path of the particle lies on a circle.

Solution. i) The path is at the point (2,1) when

√
8 cos(t) = 2, so cos(t) =

1
√

2
and

√
2 sin(t) = 1, so sin(t) =

1
√

2
.

For t ∈ [0,2π), this holds only when t = π/4.

Computing the derivatives of the coordinate functions with respect to t, we find

ẋ(t) = −
√

8 sin(t), ẏ(t) =
√

2 cos(t),

so that by (1)

dy

dx
(π/4) =

ẏ(π/4)

ẋ(π/4)
=

√
2 cos(π/4)

−
√

8 sin(π/4)
=

√
2/

√
2

−
√

8/
√

2
= −

1

2
.

Remark. We can verify that this is the slope by finding y as a function of x and computing the
derivative directly. The ellipse E has implicit equation

x2

8
+ y2

2
= 1.

Solving for y as a function of x, we have y(x) =
√

2 − x2

4 . (We can check that y(2) = 1.) Differenti-
ating, we find

y′(x) = 1

2

1√
2 − (x2/4)

(−2x/4) = − x

4
√

2 − (x2/4)
.

We have y′(2) = −1/2.

ii) Because the position (x(t), y(t)) and the velocity (ẋ(t), ẏ(t)) are supposed perpendicular
for all t ∈ I, their dot product (x(t), y(t)) ⋅ (ẋ(t), ẏ(t)) = x(t)ẋ(t)+ y(t)ẏ(t) is equal to 0 for
all t ∈ I.

iii) Rearranging the expression from ii) and applying (1), we get

y(t)ẏ(t) = −x(t)ẋ(t),

y(t)
ẏ(t)

ẋ(t)
= −x(t),

y(t)
dy

dx
(x(t)) = −x(t).

Therefore, the function y(x) satisfies the differential equation

y
dy

dx
= −x.

iv) The last equation is separable. Solutions are given implicitly by

∫ y dy = ∫ −xdx.
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Integrating,
y2 = −x2 +C,

so that
x2 + y2 = C.

We conclude that the graph of the function y(x), and hence the trajectory of the particle,
lies on the circle x2 + y2 = C, for some constant C.
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Optional Problem. For those who enjoy playing around with (alge-
braic) equations (and can spare a bit of time): Let C be the curve in
R2 defined implicitly by the equation

(x2 + y2)3 = (x2 − y2)2 (the quadrifolium, or four-leafed clover).

Find the points of C where the hypotheses of the Implicit Function
Theorem do not hold.
Answer: (0,0), (1,0), (−1,0), (

√
2
27

,
√

10
27
), (
√

2
27

,−
√

10
27
), (−

√
2
27

,
√

10
27
), (−

√
2
27

,−
√

10
27
).

Solution. Let F (x, y) = (x2+y2)3−(x2−y2)2. We are to find the simultaneous solutions to F (x, y) = 0
and ∂F

∂y (x, y) = 0.
Computing the partial derivative:

∂F

∂y
(x, y) = 3(x2 + y2)2(2y) − 2(x2 − y2)(−2y) = 2y (3(x2 + y2)2 − 2(x2 − y2)) .

The partial is zero if and only if y = 0 or 3(x2 + y2)2 − 2(x2 − y2) = 0.
In the first case, the points on F (x, y) = 0 satisfying y = 0 are solutions to

x6 − x4 = 0, or 0 = x4(x2 − 1) = x4(x − 1)(x + 1).

So, in the first case we obtain the points (0,0), (1,0) and (−1,0).
In the second case, we have x2 − y2 = 3

2(x2 + y2)2. The points of F (x, y) = 0 satisfying this
equality are solutions to

0 = (x2 + y2)3 − 9

4
(x2 + y2)4 = (x2 + y2)3(1 − 9

4
(x2 + y2)).

The possibility (x2 + y2)3 = 0 has solution (0,0), which we already accounted for.
In the second possibility, we have

x2 + y2 = 4

9
.

Together with

x2 − y2 = 3

2
(x2 + y2)2 = 3

2
(4

9
)
2

= 8

27
,

we get a pair of equations we can solve for x2 and y2, which yields the remaining four points.
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