
Mthe 237 Midterm Solutions

Problem 1 (10 points). Solve the following differential equation. You may leave your
solution in implicit form.

(x2 − x + y2) + (2xy − e−y)
dy

dx
= 0, y(0) = 1.

Solution. Write

M(x, y) = x2 − x + y2 and

N(x, y) = 2xy − e−y.

We have
∂M

∂y
= 2y =

∂N

∂x
,

therefore, since it is also true that M(x, y), N(x, y), ∂M/∂y(x, y) and ∂N/∂x(x, y) are
continuous for all (x, y) ∈ R2, the equation is exact by the criterion proved in class.

We look for a function G(x, y) such that ∂G/∂x =M and ∂G/∂y = N . Implicit solutions
of the differential equation will then be given by G(x, y) = 0.

Integrating M(x, y) with respect to x, we get

1

3
x3 −

1

2
x2 + xy2 + h(y)

for some yet-undetermined function h of y. Taking the partial of this result with respect to
y, we get

2xy + h′(y).

Matching this with N(x, y), we see that we need

h′(y) = −e−y,

so that
h(y) = e−y +C.

Thus, we can take

G(x, y) =
1

3
x3 −

1

2
x2 + xy2 + e−y +C.

Finally, the initial condition determines C:

0 = G(0,1) = 1/e +C,

so that C = −1/e, and the implicit solution satisfying the initial condition is given by

x3

3
−
x2

2
+ xy2 + e−y − e−1 = 0,
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or equivalently, clearing denominators,

2x3 − 3x2 + 6xy2 + 6e−y = 6e−1.

Alternative solution. Integrating N(x, y) with respect to y, we get

xy2 + e−y + h(x),

for some yet-undetermined function h of x.
Taking partial derivative with respect to x, we get

y2 + h′(x).

Matching this with M(x, y), we see that

h′(x) = x2 − x,

so that

h(x) =
1

3
x3 −

1

2
x2 +C.

Thus, we again have

G(x, y) =
1

3
x3 −

1

2
x2 + xy2 + e−y +C,

and we can determine the constant C from the initial condition as in the previous solution.

Problem 2 (5+10=15 points). i) Show that

∫
ds

s ln s
= ln(ln(s)) +C.

ii) Solve the differential equation

(x2 − 1)
dy

dx
= 2xy ln(y), y(0) = e−1.

Solution. i) Making the substitution u = ln(s), du = ds/s, the integral becomes

∫
du

u
= ln(u) +C = ln(ln(s)) +C.

ii) This equation is separable. Separating variables, we have

1

y ln(y)

dy

dx
=

2x

x2 − 1
, y ≠ 0, y ≠ 1, x ≠ ±1.

Integrating both sides, we get

∫
dy

y ln(y)
= ∫

2x

x2 − 1
dx.
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By part i), the left side is ln(∣ln(y)∣), and the right side is ln(∣x2 − 1∣)+C (for example,
by substituting u = x2 − 1, du = 2xdx).

Taking exponentials of both sides, we get

ln(y) = C ∣x2 − 1∣ ,

where C is allowed to be negative.

Imposing the initial condition, we get

ln(e−1) = C,

so that C = −1. Finally, taking another exponential, we find

y = exp(− ∣x2 − 1∣),

To match the initial condition and restrictions that came up in the problem, we need
to take −1 < x < 1 (x ≠ ±1, and the domain of the solution is a connected interval that
contains the x-coordinate of the initial condition, which is equal to 0 in this problem).
In this domain, x2 − 1 < 0, so − ∣x2 − 1∣ = x2 − 1. Since 0 < exp(x2 − 1) < 1 for such x,
there are no additional restrictions on the domain coming from the conditions on y.
Therefore, the solution is

y(x) = exp(x2 − 1), −1 < x < 1.

Problem 3 (5+15+5=25 points). Let a be a nonzero real number. Consider the differential
equation

dy

dx
= y2 + (πa/2)

2
, y(0) = 0. (1)

i) What is the strongest conclusion that can be made regarding solutions of equation (1)
using the Existence and Uniqueness Theorem for First Order Differential Equations?

(Is a solution certain to exist in some open interval containing 0? If so, is a solution certain to be

unique in some open interval containing 0?)

ii) Find a function φ of x that solves the differential equation (1). What is the largest
domain over which φ is defined and differentiable (the answer will depend on the
number a)? Denote this domain by Ia.

(The following integral may be useful: for any nonzero α ∈ R, ∫
ds

s2 + α2
= 1

α
arctan( s

α
) +C.)

iii) Recall that the length of an open interval (c, d) = {x ∈ R ∶ c < x < d} is defined to be
d − c. For example, the length of (3,7) is 4 and the length of (−2,1) is 3.

What is the length of the domain Ia found in part ii)? Find a value of a so that the
length of Ia is less than or equal to 1

1000 .
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Solution. i) The differential equation we are working with is

dy

dx
= F (x, y), F (x, y) = y2 + (πa/2)2, y(0) = 0. (2)

(Despite the fact that F (x, y) does not depend on x, it is a function of two variables.)

Because F (x, y) is a polynomial, it is continuous at all (x, y) ∈ R2. Take R = R2. Since
F is continuous over R, and R contains the point (0,0) in its interior, we can conclude
by the Existence part of the Existence and Uniqueness Theorem that there exists some
interval I containing 0, and a solution φ(x) ∶ I → R of equation (2).

For the Uniqueness part of the theorem, we need to compute

∂F

∂y
= 2y.

∂F /∂y is again a polynomial, hence continuous at all (x, y) ∈ R2. Again, we can take
R to be all of R2, and conclude that there exists some open interval I ′ ⊆ I about x = 0,
such that if φ1(x) and φ2(x) are two solutions of (2) over I ′ (in particular, satisfying
the initial condition φ1(0) = φ2(0) = 0), we have φ1(x) = φ2(x) for all x ∈ I ′.

In summary, we can conclude by the Existence and Uniqueness Theorem that a unique
solution exists with domain some (possibly small) open interval I containing x = 0.

ii) The equation is separable. Separating variables, we have

1

y2 + (πa/2)2
dy

dx
= 1,

so that, integrating both sides,

∫
dy

y2 + (πa/2)2
= ∫ 1dx.

We get
1

πa/2
arctan(

y

πa/2
) = x +C.

Using the initial condition,

1

πa/2
arctan(

0

πa/2
) = 0 +C.

Since arctan(0) = 0, we conclude that C = 0.

Now, solving for y as a function of x, we get

arctan(
y

πa/2
) =

πax

2
,

so that

φ(x) =
πa

2
tan(

πax

2
) .

4



The function tan has infinite discontinuities at . . . , −3π
2 , −

π
2 ,

π
2 ,

3π
2 , . . . . Since solutions

of differential equations are differentiable, hence continuous, this restricts the domain
of the solution. The domain should be an open interval that contains x = 0 (the x-
coordinate of the initial condition). Therefore, the domain is all of x that satisfy the
two inequalities

−
π

2
<
πax

2
<
π

2
.

Dividing through by πa/2, this gives

−
1

a
< x <

1

a
.

This is then the domain of the solution:

Ia = {x ∈ R ∶ −1

a
< x <

1

a
} = (−

1

a
,

1

a
) .

iii) The length of Ia is
1

a
− (−

1

a
) =

2

a
.

We need to find a so that
2

a
≤

1

1000
.

Any
a ≥ 2000

would satisfy this inequality. For instance, we can take a = 2017.

Remark. This problem illustrates the following interesting point: even though the
function F (x, y) and its partial ∂F /∂y(x, y) are continuous over all of R2, the interval
of existence of the solution can be made arbitrarily small by making a sufficiently large.

This is in sharp distinction with the case of linear differential equations, whose solu-
tions exist (and are unique) over the entire interval where we have continuity of the
coefficients in the equation

dry

dtr
+ ar−1(t)

dr−1y

dtr−1
+⋯ + a1(t)

dy

dt
+ a0(t)y = 0.

(The equation
dy

dx
= y2 + (πa/2)2

is nonlinear because of the y2 term.)

Problem 4 (10+5+5+10+20=50 points). Consider an example of a simple pendulum: it
consists of a rigid, but weightless, linear rod of length L, one of whose ends is attached to a
fixed point O, and a mass m that is attached to the free end of the rod.

Denote the angle the rod makes with the vertical line passing through the point O at
time t by θ(t). The motion of the pendulum is completely described by θ(t).
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O

m

θ(t)
L

Suppose that gravity is uniform, and points down. One can show that when the angle θ(t)
remains close to 0 throughout the motion, so that we can make the small angle approximation
sin(θ) ≈ θ, to a good approximation θ(t) satisfies the differential equation

mL2d
2θ

dt2
+ dL

dθ

dt
+mgLθ = 0,

where d > 0 is a damping constant, and g is the gravitational constant.

i) In terms of the constants m, L, d, and g, characterize when the pendulum is under-
damped, critically damped, and overdamped. Briefly describe a typical motion of the
pendulum in each of these three cases.

Suppose that d/mL = 6 and g/L = 9. In the absence of a driving torque, the motion of the
pendulum is then described by the equation

d2θ

dt2
+ 6

dθ

dt
+ 9θ = 0. (3)

ii) Find the roots of the characteristic polynomial χ(z) of equation (3).

iii) Find a basis {φ1, φ2} of the space of solutions of equation (3).

iv) Compute the Wronskian W (φ1, φ2)(t) of φ1 and φ2. Using the result, verify that φ1

and φ2 are linearly independent.

If a clockwise torque of magnitude te−3tmL2 is applied to the pendulum, the equation of
motion becomes

d2θ

dt2
+ 6

dθ

dt
+ 9θ = te−3t. (4)

v) Solve equation (4) subject to the initial conditions

θ(0) = 0,
dθ

dt
(0) = 0,

using your preferred method.
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Solution. i) The types of motion are determined by the types of roots of the characteristic
polynomial of the differential equation. Dividing through by mL2, we get

d2θ

dt2
+

d

mL

dθ

dt
+
g

L
θ = 0,

which has the characteristic polynomial

χ(z) = z2 +
d

mL
z +

g

L
.

Recall that the discriminant of a quadratic polynomial az2 + bz + c is by definition
∆ = b2 − 4ac. For the characteristic polynomial χ(z), the discriminant is

(
d

mL
)

2

− 4
g

L
=
d2 − 4m2Lg

m2L2
.

The sign of the discriminant is the same as the sign of the numerator, so we focus on

d2 − 4m2Lg.

• If d2 − 4m2Lg < 0 (equivalently, d < 2m
√
Lg), then the characteristic polyno-

mial has two conjugate complex roots. The pendulum is said to be underdamped,
and a typical motion is a sinusoidal oscillation with an exponentially decaying
amplitude.

⋯

• If d2 − 4m2Lg > 0 (equivalently, d > 2m
√
Lg), then the characteristic polynomial

has two distinct real roots. The pendulum is said to be overdamped, and a typical
motion either decays towards the rest position, passing the rest position at most
once. There is no sinusoidal oscillation about the rest position.

⋯

• If d2 − 4m2Lg = 0 (equivalently, d = 2m
√
Lg), then the characteristic polynomial

has a repeated real root. The pendulum is said to be critically damped. The motion
is similar to the overdamped case, but returns to the rest position in the least
time among all overdamped motions.
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ii) The characteristic polynomial is

χ(z) = z2 + 6z + 9 = (z + 3)2.

There is a double real root at z = −3.

iii) By the general procedure, the basis of solutions is

{φ1(t) = e
−3t, φ2(t) = te

−3t} .

iv) Computing the derivatives of φ1 and φ2, we have

(e−3t)′ = −3e−3t

(t e−3t)′ = e−3t − 3te−3t = (1 − 3t) e−3t.

Therefore, the Wronskian is

W (φ1, φ2)(t) = det(
e−3t t e−3t

−3e−3t (1 − 3t)e−3t
) = (1 − 3t)e−6t + 3te−6t = e−6t.

At t = 0, we have
W (φ1, φ2)(0) = e

0 = 1 ≠ 0,

so we can conclude that φ1 and φ2 are indeed linearly independent (we have proven
that the functions given by the procedure for writing down a basis of solutions are
indeed linearly independent in class, but it is nice to have an independent check).

Finally, we see that W (φ1, φ2)(t) ≠ 0 for all t, as should be the case by Abel’s theorem.

v) Annihilator method. We need to find an annihilator of te−3t. But te−3t is actually one
of the basis elements of the solutions of

(
d

dt
+ 3)

2

y = 0

we found above (namely, φ2). Hence,

(
d

dt
+ 3)

2

is an annihilator of te−3t.

Applying the annihilator to both sides of eq. (4), we obtain the linear homogeneous
equation

(
d

dt
+ 3)

2

(
d

dt
+ 3)

2

y = (
d

dt
+ 3)

4

y = 0. (5)

The basis of solutions of eq. (5) is

{e−3t, te−3t, t2e−3t, t3e−3t} .
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The first two are solutions of the associated homogeneous equation, hence will not help
in finding the particular solution. So, take

φp = At
2e−3t +Bt3e−3t.

Differentiating, we have

φ′p = A (2te−3t − 3t2e−3t) +B (3t2e−3t − 3t3e−3t)

= 2Ate−3t − (3A − 3B) t2e−3t − 3B t3e−3t

φ′′p = 2A (e−3t − 3te−3t) − (3A − 3B) (2te−3t − 3t2e−3t) − 3B (3t2e−3t − 3t3e−3t)

= 2Ae−3t + (−6A − 6A + 6B) te−3t + (9A − 9B − 9B) t2e−3t + 9B t3e−3t

= 2Ae−3t + (−12A + 6B) te−3t + (9A − 18B) t2e−3t + 9Bt3e−3t.

Now, computing φ′′p + 6φ′p + 9φp, we have

2Ae−3t + (−12A + 6B) te−3t + (9A − 18B) t2e−3t + 9B t3e−3t
+6 (2Ate−3t − (3A − 3B) t2e−3t − 3B t3e−3t)

+9(At2e−3t +B t3e−3t)
= 2Ae−3t + (−12A + 6B + 12A) te−3t + (9A − 18B − 18A + 18B + 9A) t2e−3t + (9B − 18B + 9B) t3e−3t

= 2Ae−3t + 6B te−3t.

For φp to be a solution of (4), we have to have φ′′p + 6φ′p + 9φp = te−3t. Comparing
coefficients, we get the system of equations

2A = 0

6B = 1.

Therefore, A = 0, B = 1
6 and

φp =
t3e−3t

6
.

Now, the affine space of all solutions is

φp + {Solutions of
d2θ

dt
+ 6

dθ

dt
+ 9θ = 0} =

t3e−3t

6
+Ce−3t +Dte−3t, C,D ∈ R.

We determine C and D by the initial conditions. The derivative is

3t2e−3t − 3t3e−3t

6
− 3Ce−3t +De−3t − 3Dte−3t.

From θ(0) = 0, we have
0 +Ce0 + 0 = 0,

and from θ′(0) = 0, we have

0 − 3Ce0 +De0 − 0 = 0.
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Thus,

C = 0

−3C +D = 0

and C =D = 0.

The solution satisfying the initial conditions is

φ(t) =
t3e−3t

6
.

Variation of parameters. Take e−3t and te−3t as the solutions of the associated homoge-
neous equation (found above). The variation-of-parameters particular solution is given
by

φp = u1 e
−3t + u2 te

−3t,

where u1 and u2 are functions whose derivatives satisfy the system of equations

(
e−3t te−3t

−3e−3t (1 − 3t)e−3t
)(
u′1
u′2

) = (
0

te−3t
) .

We use Cramer’s rule to solve the system of equations.

u′1 =

det(
0 te−3t

te−3t (1 − 3t)e−3t
)

W (e−3t, te−3t)(t)
=
−t2e−6t

e−6t
= −t2.

Therefore,

u1 = ∫ −t
2 dt = −

t3

3
.

We have

u′2 =

det(
e−3t 0
−3e−3t te−3t

)

W (e−3t, te−3t)(t)
=
te−6t

e−6t
= t.

Therefore,

u2 = ∫ t dt =
t2

2
.

Finally,

φp = u1e
−3t + u2te

−3t = −
t3e−3t

3
+
t3e−3t

2
=
t3e−3t

6
.

Now, proceed as in the undetermined coefficients solution, adding a solution to the
associated homogeneous equation to satisfy the initial conditions (in this case, it turns
out that the particular solution already satisfies the initial conditions).

Laplace transform. Taking the Laplace transform of both sides, we get

L [θ′′](s) + 6L [θ′](s) + 9L [θ](s) = L [te−3t](s) =
1

(s + 3)2
.
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Therefore, using the initial conditions θ(0) = θ′(0) = 0,

s2L [θ](s) + 6sL [θ](s) + 9L [θ] = (s2 + 6s + 9)L [θ](s) = (s + 3)2L [θ](s) =
1

(s + 3)2
.

Finally,

L [θ](s) =
1

(s + 3)4
.

From the transform

L [t3e−3t](s) =
3!

(s + 3)4
=

6

(s + 3)4
,

we see that

θ(t) =
t3e−3t

3!
=
t3e−3t

6
.
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