1. Solve the following equations using the Laplace transform method.

i) 
$$\frac{dy}{dt} - y = e^t$$
,  $y(0) = 1$ .  
ii)  $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = 0$ ,  $y(0) = 1$ ,  $\frac{dy}{dt}(0) = 1$ .  
iii)  $\frac{d^2y}{dt^2} - 2\frac{dy}{dt} + 5y = 0$ ,  $y(0) = 2$ ,  $\frac{dy}{dt}(0) = 4$ .  
iv)  $\frac{d^3y}{dt^3} - 2\frac{d^2y}{dt^2} + \frac{dy}{dt} = 2e^t + 2t$ ,  $y(0) = 0$ ,  $\frac{dy}{dt}(0) = 0$ ,  $\frac{d^2y}{dt^2}(0) = 0$ .

Optional Problem. Also solve the two equations from Problem Set 6 using the Laplace transform:

v) 
$$\frac{d^2y}{dt^2} + \frac{dy}{dt} - 2y = 2t$$
,  $y(0) = 0$ ,  $\frac{dy}{dt}(0) = 1$ .  
vi)  $\frac{d^2y}{dt^2} + 16y = t^2 + \sin(4t)$ ,  $y(0) = \frac{127}{128}$ ,  $\frac{dy}{dt}(0) = \frac{7}{8}$ .

These will require more algebraic manipulations to get the expression for  $\mathscr{L}[y](s)$  into a form where the inverse transform can be found by inspection.

2. i) Show that  $\int_0^\infty f(t)e^{-st} dt$  converges for  $s = s_0 - \sigma$  if and only if  $\int_0^\infty (e^{\sigma t} f(t))e^{-st} dt$  converges for  $s = s_0$ .

Hence, show that if the domain of  $\mathscr{L}[f]$  is all s > a, then the domain of  $\mathscr{L}[e^{\sigma t}f]$  is all  $s > a + \sigma$ , and we have

$$\mathscr{L}[e^{\sigma t}f](s) = \mathscr{L}[f](s-\sigma) \text{ for all } s > a + \sigma.$$

ii) Taking the four transforms

$$\mathscr{L}[\cos(\omega t)](s) = \frac{s}{s^2 + \omega^2}, \ s > 0, \qquad \mathscr{L}[\sin(\omega t)](s) = \frac{\omega}{s^2 + \omega^2}, \ s > 0,$$
$$\mathscr{L}[t\cos(\omega t)](s) = \frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}, \ s > 0 \qquad \text{and} \qquad \mathscr{L}[t\sin(\omega t)](s) = \frac{2\omega s}{(s^2 + \omega^2)^2}, \ s > 0$$

as known, find

$$\mathscr{L}[e^{\sigma t}\cos(\omega t)], \quad \mathscr{L}[te^{\sigma t}\cos(\omega t)], \quad \mathscr{L}[e^{\sigma t}\sin(\omega t)] \quad \text{and} \quad \mathscr{L}[te^{\sigma t}\cos(\omega t)]$$

**3.** As a reminder, earlier in the term we defined the functions

$$\cosh(\omega t) = \frac{e^{\omega t} + e^{-\omega t}}{2}$$
 and  $\sinh(\omega t) = \frac{e^{\omega t} - e^{-\omega t}}{2}, \quad t \in \mathbb{R}.$ 

Find expressions for  $\mathscr{L}[\cosh(\omega t)]$  and  $\mathscr{L}[\sinh(\omega t)]$  in the following two ways:

i) Take as known the transform

$$\mathscr{L}[e^{\sigma t}](s) = \frac{1}{s - \sigma}, \quad s > 0,$$

and use linearity of  $\mathscr{L}$ .

ii) Check that

and

$$\cosh(0) = 1, \qquad \frac{d}{dt} \cosh(\omega t) \Big|_{t=0} = 0,$$
$$\sinh(0) = 0, \qquad \frac{d}{dt} \sinh(\omega t) \Big|_{t=0} = \omega.$$

Then, find a linear homogeneous differential equation with constant coefficients that has cosh and sinh as solutions, apply  $\mathscr{L}$  to both sides of the differential equation, and use the initial conditions found above.

(Although you do not have to show this, the domain of both  $\mathscr{L}[\cosh(\omega t)]$  and  $\mathscr{L}[\sinh(\omega t)]$  is equal to  $s > |\omega|$ , as may be tempting to guess from the domains of  $e^{\omega t}$  and  $e^{-\omega t}$ .)

Optional Problem. Compute  $\mathscr{L}[\cosh(\omega t)]$  and  $\mathscr{L}[\sinh(\omega t)]$  from the definition, and verify the claim just made about their domains.

**4.** Let f and g denote the following two functions.



i) Show that the convolution f \* f of f with itself is equal to g, in the following two ways. First, compute f \* f using the definition of convolution

$$f * f(t) = \int_0^t f(u)f(t-u) \, du$$

and check that the result is equal to q.

Second, write both f and g as an expression involving step functions, and apply the property  $\mathscr{L}[f * f] = \mathscr{L}[f] \mathscr{L}[f]$  of the Laplace transform.

ii) Compute the convolution (2f) \* g of 2f with g in the same two ways as part i).

Optional Problem. Investigate the motion of a simple harmonic oscillator starting from rest

$$\frac{d^2y}{dt^2} + y = F(t), \qquad y(0) = 0, \quad \frac{dy}{dt}(0) = 0,$$

subject to forcing functions f(t), g(t) and ((2f) \* g)(t).