
Mthe 237 — Problem Set 07 Due Wed. Nov. 08 at the beginning of class

1. Solve the following equations using the method of variation of parameters.

i)
dy

dt
− 2t

t2 + 1
y = 1, y(0) = 0. (The integral ∫

ds
s2+1 = arctan(s) +C may be useful.)

ii)
d2y

dt2
+ 2

dy

dt
+ y = e

−t

t
, t > 0 y(1) = 0,

dy

dt
(1) = −e−1.

iii) 2t2
d2y

dt2
+ 3t

dy

dt
− y = 1

t
, t > 0, y(1) = 0,

dy

dt
(1) = 11

6
,

given that φ1 = t1/2 and φ2 = t−1 are solutions of the associated homogeneous equation.

2. A first-order differential equation of the form

dy

dt
+ a(t)y = F (t)yk, k ≠ 0, 1 real, y ≠ 0 (1)

is called a Bernoulli equation.
Although Bernoulli equations are nonlinear (unless k = 0 or k = 1, which is the reason for

excluding these exponents), they can always be converted to linear equations by a change of
variable.

i) Let y(t) be a solution of the Bernoulli equation (1). Let v(t) = y(t)1−k. Show that
1

1−k
dv
dt = y−k dy

dt . Then, show that v(t) is a solution of the differential equation

dv

dt
+ (1 − k)a(t)v = (1 − k)F (t), (2)

which is now linear.

(Conversely, one can similarly show that if v(t) is a solution of (2), then y(t) = v(t)1/(1−k) is a solution

of (1).)

ii) Solve the equation

dy

dt
= εy − σy3, ε > 0, σ > 0, y(0) =

√
2ε/σ

by recognizing it as a Bernoulli equation and making the above change of variable.

iii) Solve the equation
dy

dt
+ y = ty3, y(0) = 1.

3. In this problem, we look at resonance in a simple harmonic oscillator.
Consider an undamped spring with spring constant k hanging vertically, with one end

fixed and the other end attached to a mass m. As derived in Problem Set 04, the equation
of motion of the mass about its rest point is

d2y

dt2
+ ω2

0y = 0,

1
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where ω0 is the frequency of the two solutions, cos(ω0t) and sin(ω0t), called the natural
frequency of the oscillator.

Suppose that we introduce an oscillating driving force F (t) = mF0 cos(ωt), with ampli-
tude (mF0) and frequency ω. The equation of motion then becomes

d2y

dt2
+ ω2

0y = F0 cos(ωt). (3)

Suppose that ω = ω0, so that the frequency of the driving force exactly matches the natural
frequency of the oscillator.

i) Show that the set of solutions of equation (3) is equal to

{ F0

2ω0

t sin(ω0t) + b1 cos(ω0t) + b2 sin(ω0t) ∶ b1, b2 ∈ R} .

ii) Suppose that the oscillator starts at rest, so that we have the initial conditions

y(0) = 0,
dy

dt
(0) = 0.

Find the solution of equation (3) satisfying these initial conditions and sketch the graph
of the solution for t > 0.

iii) Suppose that the initial conditions are instead

y(0) = 0,
dy

dt
(0) = 10ω0.

Find the solution of equation (3) satisfying these initial conditions and sketch the graph
of the solution for t > 0.

4. Let c1, . . . , cr be a collection of real numbers.

i) Suppose that the numbers c1, . . . , cr are pairwise distinct (meaning ci ≠ cj if i ≠ j). Find
a linear homogeneous equation whose space of solutions has the set {ec1t, . . . , ecrt} as
a basis. Using results from class, conclude that the Wronskian W (ec1t, . . . , ecrt)(t) is
not equal to zero for all t ∈ R.

ii) Conclude that the Vandermonde determinant of c1, . . . , cr,

det

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 ⋯ 1
c1 c2 ⋯ cr
c21 c22 ⋯ c2r
⋮ ⋮ ⋱ ⋮

cr−11 cr−12 ⋯ cr−1r

⎞
⎟⎟⎟⎟⎟⎟
⎠

is not equal to zero if and only if the numbers c1, . . . , cr are pairwise distinct. (Reminder:

in proving an ‘if and only if’ statement, there two directions of implication to show. One of the

directions here is fairly simple, while the other can be proved using the result of part i).)

The Vandermonde determinant comes up often throughout Mathematics, and the property proved in

part ii) is very useful to know.
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