
Mthe 237 — Problem Set 05 Due Fri. Oct. 20 at the beginning of class

1. i) Check that the polynomial differential operators

p(
d

dt
) =

d2

dt
+ a

d

dt
+ b and q (

d

dt
) =

d

dt
+ c, a, b, c ∈ C

commute. That is, check that for any function y ∶ I → C,

p(
d

dt
) [q (

d

dt
) y] = q (

d

dt
) [p(

d

dt
) y] .

Optional Problem. Check that any pair of polynomial differential operators with con-
stant coefficients commutes.

ii) The differential equation

d4y

dt4
− 4

d3y

dt3
+ 14

d2y

dt2
− 20

dy

dt
+ 25y = 0 (1)

has the characteristic polynomial

χ(z) = z4 − 4z3 + 14z2 − 20z + 25 = [(z − (1 + 2i))(z − (1 − 2i))]
2
.

Making use of the fact that the corresponding polynomial differential operator factors
as

d4

dt4
− 4

d3

dt3
+ 14

d2

dt2
− 20

d

dt
+ 25 = [(

d

dt
− (1 + 2i))(

d

dt
− (1 − 2i))]

2

,

as well as the fact that polynomial differential operators with constant coefficients
commute, check that the functions

e(1+2i)t, t e(1+2i)t, e(1−2i)t, t e(1−2i)t

are solutions of (1).

Then, taking for granted that complex linear combinations of complex-valued solutions
of (1) are again solutions (this follows from the fact that the set of complex-valued
solutions of (1) is a complex vector space), show that it follows that

et cos(2t), t et cos(2t), et sin(2t), t et sin(2t)

are also solutions of (1).
Remark. The purpose of part ii) is to go through the computations involved in the general proof
that functions of the form tkewt (with w a root of χ(z)) are solutions of the differential equation
χ(d/dt)y = 0 in a specific example. Because we went through the general proof in lecture, it is not
necessary to perform this check every time we solve a differential equation; the check is done in this
question to help with understanding the general proof.
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2. In this problem, we look at a cylindrical cork bobbing up and down in a pool of fluid.
Let d denote the density of the cork, and let ρ denote the density of the fluid (both are

assumed uniform). Assume that d < ρ. Let A denote the area of the circular face of the cork,
and let ` denote the length of the cork (measured perpendicular to the circular face).

Choose coordinates so that the surface of the fluid is in the xy-plane, and the positive
z-direction points out of the pool of fluid. Assume that gravity is uniform, with gravitational
constant g, and points in the negative z-direction.

i) By Archimedes’ principle, the fluid exerts a buoyant force on the cork (in the positive
z direction) equal to the weight (= mass times gravitational constant) of the fluid
displaced by the cork.

If the cork floats at rest in the pool of fluid, the weight of the fluid displaced by the
submerged part of the cork must be equal to the total weight of the cork.

Suppose that the cork floats at rest with its circular face parallel to the surface of the
fluid. Let h denote the height of the submerged part of the cork measured from its
bottom face. Show that

h = (
d

ρ
) `.

ii) Let z denote the displacement of the cork from the rest level h (take the displacement
to be positive along the positive z direction, so that the cork is still oriented with its
circular faces parallel to the surface of the fluid, and small enough so that the cork
does not completely leave the fluid). Show that the sum of the gravitational force on
the cork and the buoyant force is

−Aρgz ez,

where ez is the unit vector in the positive z-direction.

iii) As long as the motion of the cork is not too rapid (and the fluid is sufficiently viscous),
the fluid exerts a drag force on the cork proportional to the velocity of its motion, and
directed opposite to the velocity. (This is called the laminar case. If there is turbulence, the

drag is proportional to the square of the velocity, and the problem is no longer linear.) Thus,
the net force on the cork is (−bdzdt −Aρgz)ez. By Newton’s second law, the equation of
motion is

A`d
±

Mass of cork

d2z

dt2
+ b

dz

dt
+Aρgz = 0.

In terms of the constants A, `, d, b, ρ, g, characterize when the resulting motion will be
overdamped, critically damped, and underdamped. Briefly describe the motion of the
cork in each of these three cases.

3. Using Abel’s theorem, find the Wronskian of two solutions of Bessel’s equation

d2y

dt2
+

1

t

dy

dt
+ (1 −

ν2

t2
) y = 0, t > 0,

up to a real constant.
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