1. For each of the following, find a function $y(x)$ that satisfies the differential equation and initial condition. Take care to provide the domain of definition of the solution.

i)
$$
\frac{dy}{dx} = 5y^2
$$
, $y(0) = 1$;
\nii) $x\frac{dy}{dx} = 2(y-9)$, $y(1) = 10$;
\niii) $(x^2 + 1)\frac{dy}{dx} = xy$, $y(0) = 1$;
\niv) $\frac{dy}{dx} = xy + 2x + y + 2$, $y(0) = -1$;
\nv) $2xy\frac{dy}{dx} = x^2 + y^2$, $y(1) = \sqrt{3}$ (Corrected Sept. 20).

2. As we saw in lecture, if the path of a particle described parametrically by $(x(t), y(t))$, $t \in I$ lies on the graph of a function $y(x)$, then by the chain rule

$$
\frac{dy}{dt}(t) = \frac{dy}{dx}(x(t))\frac{dx}{dt}(t),
$$

so that

$$
\frac{dy}{dx}(x(t)) = \frac{\frac{dy}{dt}(t)}{\frac{dx}{dt}(t)}
$$
 or, written more compactly,
$$
\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}}
$$
 whenever $\dot{x} \neq 0$. (1)

i) The path $t \mapsto ($ $8\cos(t),$ $2\sin(t)$, $t \in [0, 2\pi)$ describes an ellipse E. Using (1), find the slope of the tangent line to E at the point $(2, 1)$.

As a reminder, the vector $(\dot{x}(t), \dot{y}(t))$ is called the velocity of the particle at time t.

Suppose that the velocity of a particle is perpendicular to its position for all $t \in I$, and that the path of the particle lies on the graph of the function $y(x)$. Under these hypotheses:

- ii) Show that $x(t)\dot{x}(t) + y(t)\dot{y}(t) = 0$ for all $t \in I$.
- iii) Show that $y(x)$ is a solution to the differential equation

$$
y\,\frac{dy}{dx} = -x.
$$

iv) Conclude that the path of the particle lies on a circle.

Optional Problem. For those who enjoy playing around with (algebraic) equations (and can spare a bit of time): Let C be the curve in \mathbb{R}^2 defined implicitly by the equation

 $(x^2 + y^2)^3 = (x^2 - y^2)^2$ (the quadrifolium, or four-leafed clover).

Find the points of C where the hypotheses of the Implicit Function Theorem do not hold.

Answer: (0,0), (1,0), (-1,0), ($\sqrt{\frac{2}{27}}, \sqrt{\frac{10}{27}}$), ($\sqrt{\frac{2}{27}}, -\sqrt{\frac{10}{27}}$), ($-\sqrt{\frac{2}{27}}, \sqrt{\frac{10}{27}}$), ($-\sqrt{\frac{2}{27}}, -\sqrt{\frac{10}{27}}$).

