MTHE 227 PROBLEM SET 12 SOLUTIONS

1. Let S be the part of the sphere 22 + 42 + 22 = 4 contained in the octant z >0, y >0, z > 0,
oriented outward, and let C' = S be the boundary curve of S with the induced orientation
(thus, C'is a simple closed curve consisting of three arcs).

Let F(z,y,2) = (y,—, z). Compute [[¢curl F-dS in three ways:
(a) Directly compute [, F-dr. (This is equal to [[4curl F-dS by Stokes’ theorem.)
(b) Directly compute [[ycurl F-dS by parametrizing S.

(c) Let R be the region enclosed by S and the three coordinate planes. Let Dy, Dy, Ds
be the three quarter-disks making up the boundary of R along with S, each oriented
outward (we have OR = S + Dy + Dy + Ds3). Explain why

[[ CurlF-dSZ—f/curlF-dS,
D1+Dso+Ds3 S

and directly compute the flux of curl F across each of the D;, hence across S.
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Solution.

(a) Write C' =08 = Cy + Cy + C3, where the C; are the three arcs drawn above.

(' : Parametrize this as
. T
t — (2cos(t), 2sin(t), 0), te [0, 5] .

The velocity is v(t) = (-2sin(t), 2cos(t), 0). We have

F(r(t)) = (2sin(t),-2cos(t),0),
F(r(t))-v(t) = —4sin®(t) — 4 cos?(t) = 4.
Therefore,

/2
F~dr=/ _Adt = -2
Cq 0

1



Cy: Parametrize this as

£ (0, 2c0s(t), 2sin(t)), te [0, g]

The velocity is v(t) = (0, —=2sin(t), 2cos(t)). We have
F(r(t)) = (2cos(t), 0, 2sin(t)),
F(r(t)) -v(t) =0+0+4cos(t)sin(t).

Therefore,

w/2 -

F.dr= f 4 cos(t)sin(t) dt = [2 sinQ(t)]0/2 =2.
0

C'5: Parametrize this as

£ (=2c0s(1), 0, 2sin(1)), te [g ﬁ].

The velocity is v(t) = (2sin(t), 0, 2cos(t)). We have
F(r(t)) = (0, 2sin(t), 2sin(t)),
F(r(t))-v(t) =0+0+4cos(t)sin(t).

Therefore,
~ . _ -2 o
Cs F-dr-= [T/24COS(75) sin(t) dt = [2 S (t)]ﬂ/Q =2

Combining these computations, we have
/]curlF-dS:[ F.dr=-2r+2-2=-2r.
5 as

(b) Computing the curl, we have

ex €, €,

curlF =det| & & £
Yy - z

= (0,0, -1-1)

= (0, 0, -2).

Using the usual parametrization of the sphere,

(6,0) = (2cos(8) sin(g), 2sin(8) sin(¢), 2cos(¢)), 0 [0, g] e [0, f],

2

Ty = (2cos(0) cos(¢), 2sin(f) cos(¢), —2sin(¢)),
Ty = (-2sin(0) sin(¢), 2 cos(0) sin(¢), 0),
N =T, x Ty = (4sin®(¢) cos(f), 4sin®(¢) sin(6), 4 cos(¢) sin()).



The normal points away from the origin, as required, so
curl F(o(¢,0)) - N(¢,0) = -8 cos(¢) sin(¢).

Then,

ff curl F-dS = f i f " 8 cos() sin(6) d db
=/;r [ 4s1n2(gz5)]ﬂ/2

/2
- f —4df
0

= -27,
as in part (a).

(c¢) By the divergence theorem,

[[ curl F-dS = [/ div(curl F) dV = 0.

OR R

ff curlF-dS+[fcurlF-dS:O
D1+D2+D3 S

[[ cwrl F - dS = —ffcurlF-ds.
D1+Ds+Ds3 S

Another argument: D; + Dy + D3 and S have the same boundary curve, but induce
opposite orientations on it. It follows that

ff curlF-dS:—f F-drz—ffcurlF-ds.
D1+D2+D3 oS S

Now, because curl F = —2e,, we expect that there is no flux of curl F through D, and
D3, but let’s check this rigorously.

So

and it follows that

Dy : Parametrize as

(r,0) > (rcos(6), rsin(6), 0), re[0,2], fe [0, g]
We find that

T, = (cos(d), sin(d), 0),
Ty = (-rsin(0), rcos(h), 0),
N=T,xTy=(0,0,r).



This points up, so we take -IN = (0, 0, —r) as the normal. We have curl F(o(r,0)) -

(0,0, -1) =2r, so
/2 2 /2
/ [ 2rdrdf = [
0 0 0

D5 : Parametrize as
(r,0) — (0, rcos(0), rsin(f)) re[0,2], O¢€ [0, g]

We have
T, = (0, cos(), sin(6)),
Ty = (0, —rsin(0), rcos()),
N=T,xTy=(r0,0)
The normal goes the wrong way (not that it matters for this part!), so we need to take

(-7, 0,0). Now,
curl F(r, 8) - (-r, 0, 0) = 0.

ff cwlF-dS = 0.
Do

So,

Ds: Parametrize as
(r,0) = (rcos(6), 0, rsin(8)) re[0,2], O [0, g]

We have

T, = (cos(h), 0, sin()),
= (-rsin(0), 0, rcos(d)),
N=TT><T9:(07 -, O)

The normal points the right way, but we have curl F(r,0) - (0, —r, 0) = 0, and so

/] curl F-dS =0.
D3

ff curl F-dS = 27+ 0+0 = 27,
D1+D2+D3

ffcurlF ds - - ff cwrlF-dS = -
D1+D2+D3

in agreement with parts (a) and (b).

We have

so that



2. Let R be the solid cube with vertices at (2, +2, +2) (so, R has side length 4 and is
centered at the origin). Let S be the boundary OR of R with the disk 22 +¢y? < 1,2 = 2
removed from its top face. Let

F(z,y,2) = (zy? + arctan(y?z), y® — e #(=2’

, cos(mz)).
(a) Apply the divergence theorem to compute the flux of F through OR.

(b) Directly compute the flux of F through the disk 2 + y? < 1,z = 2, with the normal
pointing up (that is, along the positive z-direction).

(c) Combine the results of parts (a) and (b) to compute the flux through S, with the
normal pointing outward.

Solution.

(a) We have

divF = (%(ny +arctan(y?z)) + (%(y?’ — e (=2 4 %(cos(wz))

=y*+0+3y* -0 - msin(72)

= 4y* — msin(7z).

The integral of divergence over the cube R is

2 2 2
M divFdV = f [ f 4o? — msin(rz) dz dy dx
R —2 J-2 J-2

2 2
= [ / 1652 + [cos(72) 1%, dy da
—2 Joo
2 2
= / f 16y% + 0dy dx
2 Jo2
2116 ,7°
- 2] g
[2 [ 3 y ]_2 o
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(b) We parametrize as
(r, 0) » (rcos(9), rsin(f), 2) re[0,1], 6¢€[0,2r].
We have

T, = (cos(#), sin(0),0),
Ty = (-rsin(0), rcos(6), 0),
N =T, x Ty = (0,0, ).



The normal points upward, as needed. Then,

F(o(r,0)) = (*, *, cos(2m)) = (%, *, 1)
F(o(r,0)) -N(r,0) =r.

So, the flux of F through the disk is

2 1
ff F-dS:f f rdrdf = .
Disk 0 0

(c) The flux of F through S is

ffF-dS:ff F-dS—[ F.as- %
S OR Disk 3

3. (a) The intersection of the (hollow) cylinders z2? + y? = 1 and y? + 22 = 4 consists of
two pieces, each of which is a simple closed curve. Parametrize the piece with z > 0.
(Suggestion: First parametrize its shadow in the xy-plane.)

(b) If G(x,y,2) = (222, y?x, —2%2x) and F(x,y,2) = (0, 22 + 22, y?), check that curl G = F.

(c) Let S be the surface described by 22 + 42 < 1, y?>+ 22 =4, z > 0. Compute the flux
JJ¢ F-dS, with normals pointing out of the cylinder y?+22 = 4 (that is, with N-e, > 0).
1 + cos(2x) 1 —cos(2x)

5 ., sin’(x) = 5

Possibly useful identities: cos®(z) =

Solution.

(a) The shadow of the intersection in the zy-plane is a circle of radius 1, which we can
parametrize by ¢t — (cos(t), sin(t),0), ¢ € [0,27]. Then, since every point lies on the
cylinder y?+ 22 = 4, we know that z = +1/4 — 2. Finally, since z >0, z =\/4 — 2. Thus,
the intersection curve can be parametrized as

L (Cos(t) sin(t), \/4 - sin’(t) ) [0, 27].

(b) We have

ex ey e,
_ o9 9 0
curl G = det | By 52

x?z yx -2’x

= (0 - 07 _(_Z2 - 1:2)7 y2 - 0)
= (0, 2%+ 2%, )
=F.



(c¢) By Stokes’ theorem,

/]F-dS:ffcurlG-dS:f G -dr,
S S oS

so it is equivalent to compute [ G -dr. The boundary curve of S is precisely the
oS

curve parametrized in part (a) (and the parametrization found in (a) has the correct
orientation).

The velocity of the parametrization is

v(t) = (—sin(t),cos(t), M) |

4 —sin®(t)
We have

Gr(1)) = (0082(t)\ [4—sin(1), sin(t) cos(t), — cos(t)(4 - SmZ(t))) ,

G(I‘(t)) 'V(t) = —Sin(t) COS2(t)\/1Tn2(t)+ sin2(t) COSQ(t) + COSQ(t) Sin(t)%lilngz)t)
= sin®(t) cos?(t),

Now, we use the suggested identities to find that
1 —cos(2t) 1+ cos(2t)

sin?(t) cos?(t) = 5 5
~ 1-cos?(2t)
-—
_1-(1+cos(4t))/2
B 4
_ 1 —cos(4t)
-—

So that
2
[G-drz f sin?(t) cos?(t) dt
0

_ /2” 1 —cos(4t) gt
0 8

_ o [sin(4t) o

‘“[ 32 ]0
m
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4. If S is a closed surface bounding a region R, and F is a vector field defined everywhere
in R, then by the divergence theorem we have

/]ScurleS _ ff div(curl F) dV = 0,
R

since div(curl F') = 0 identically. This is analogous to the fact that [,V f-dr =0 for a closed
curve.
x Y z

Let F(x,y,2) = ((xQ T PR Py s YR (B 1 gt )P with (z,y,2) # (0,0,0).
Check that divF = 0 everywhere F is defined, but that [f. ¢ F -dS =47, where S is the unit
sphere 2 + y? + 22 = 1.

Solution. We have

o) T L (22 +y?+22)32 —w 3(a? +y? + 22)12 - (21)
Ox (22 + 12+ 2)32 (22 +y% + 22)3
22+ %+ 22 - 322
(22 + 12 + 22)52
y? + 22 — 222
(22 + 2 + 22)52

Similar computations also give

0 Yy 2?22
Oy (22 +y2 + 22)3/2 - (22 + 92 + 22)5/2’
0 z 22 +y? - 222

P (22 + 42 +22)32 (22 + 42+ 22)52

Therefore,

(2 + 22 —222) + (2?2 + 22 = 2y2) + (22 + y? - 222) _
(22 +y2 + 2252

We check that in fact for any sphere S of radius a centered at the origin, [[¢F -dS = 4.
Parametrize by

(¢, 0) = (acos(f)sin(¢), asin(f) sin(¢), acos(¢)), ¢€[0,7], 6¢€[0,27].
We have

divF = 0.

Ty = (acos(#) cos(¢), asin() cos(¢), —asin(¢)),
Ty = (—asin(f) sin(¢), acos(f) sin(¢), 0),
N =T, x Ty = (a® cos(#) sin*(¢), a*sin(6) sin?(¢), a* cos(¢) sin(¢)).



Note that for points on the sphere, (22 +y? + 22)%/2 = @3 holds. So we have

F(o(p, ) = (“ROE, SO, 1))
) (COS(H)SiH(cﬁ)’ SiH(Q)Sin(@, COS(¢)),
F(o(¢,0)) -N(¢,0) = cos?(0)sin®(¢) +sin?(0) sin®(¢) + cos?(¢) sin(¢)
= sjn3(q§) + COSQ(¢) SiIl((ﬁ)
= sin(9) (sin*(¢) + cos(9))
=sin(¢).

Finally, integrating over the sphere, we get

[/SF-dS:fo%_/Oﬂsin(gzﬁ)dgbdQ

= [T - conto); a6

= 2d0
0

=47,

Optional Problem. Define a ‘toric change of variables’ T': D - R?. ) where

D={(r,0,t)eR*:0<r<b, 0<t<2m, 0<0<2r},
by

x(r,0,t) = (b+rcos(t)) cos(b),
y(r,0,t) = (b+rcos(t))sin(6),
z(r,0,t) = rsin(t).

(a) Find a region V* in R%’r@ 9 such that its image V' = T'(V*) is the region bounded by
the torus with radii a and b.

oNx,y,z)
(b) Check that det 200.0) r(b+rcos(t)).

(c) Apply the change of variables theorem to conclude that the integral

/]fv* r(b+rcos(t))dtdrdb

is equal to the volume of V', and compute the integral.



Solution.
(a) The inequalities 0 <r <a, 0<0 < 2w, 0<t< 27 describe V*.

(b) We have

det A0r.0.0) cos(t)sin(f) (b+rcos(t))cos(f) —rsin(t)sin(9)

a(z,y, 2) e (cos(t) cos(0) —(b+rcos(t))sin(f) -rsin(t) COS(Q))
sint) 0 rcos(t)

. —(b+7rcos(t))sin(f) -rsin(t)cos(d) 4o
= sin(t) det ( (b+rcos(t))cos(f) -rsin(t) sin(Q))

1 COS cos(t) cos(f) —(b+rcos(t))sin(f)
i () (Cos(t) sin(d)  (b+rcos(t))cos(f) )

=sin(t)(rsin(t)(b+rcos(t))) +rcos(t)(cos(t)(b+rcos(t)))
=r(b+rcos(t)).

(c) The claimed integral is indeed equal to the volume of V' by the change of variables
theorem. We compute that

2 a 2
/ﬂ r(b+rcos(t))dtdrd9=/ / / rb+1? cos(t) dt dr df
v o Jo Jo
2m a
=f f 271 + 0.drr df
o Jo
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