
MTHE 227 Problem Set 9 Solutions

1 (Cross-Product in R2 and R3). For this problem, to help distinguish between the cross-
products in 2- and 3-space, for vectors

v1 = (x1, y1), v2 = (x2, y2) in R2 and w1 = (x1, y1, z1), w2 = (x2, y2, z2) in R3,

write

cross2(v1, v2) = det(x1 y1
x2 y2

) and cross3(w1, w2) = det
⎛
⎜
⎝

ex ey ez
x1 y1 z1
x2 y2 z2

⎞
⎟
⎠
.

Embed R2
(x,y)

into R3
(x,y,z)

by the map (x, y) ↦ (x, y,0) (the image being the plane z = 0).

(a) Let v1, v2 be vectors in R2
(x,y)

and w1, w2 their images under the embedding. Check
that

cross2(v1, v2) = cross3(w1, w2) ⋅ ez .

(b) Let r ∶ t ↦ (x(t), y(t),0), t ∈ [a, b] be a parametrized path in R3
(x,y,z)

(thought of as

the image of a parametrized path in R2
(x,y)

under the above embedding). Denote the

velocity vector at time t by r′(t) = (x′(t), y′(t),0). Check that

n+(t) ∶= ( y′(t), −x′(t), 0 ) = cross3(r′, ez) and

n−(t) ∶= (−y′(t), x′(t), 0 ) = cross3(ez, r′).

Solution.

(a) Writing v1 = (x1, y1), v2 = (x2, y2), w1 = (x1, y1, 0), w2 = (x2, y2, 0), we have (ex-
panding the determinant along the top row)

cross3(w1, w2) = det
⎛
⎜
⎝

ex ey ez
x1 y1 0
x2 y2 0

⎞
⎟
⎠

= det(y1 0
y2 0

) ex − det(x1 0
x2 0

) ey + det(x1 y1
x2 y2

) ez

= 0ex − 0ey + det(x1 y1
x2 y2

) ez.

Therefore,

cross3(w1, w2) ⋅ ez = det(x1 y1
x2 y2

) (ez ⋅ ez) = cross2(v1, v2).

The cross product of any pair of vectors lying in a plane will point along the normal
direction to the plane. If R2 is embedded into R3 as the xy-plane, the cross product
of two vectors in the image of R2 will point along the z-axis; the coefficient of cross3
along the z-axis is exactly cross2!
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(b) We have

cross3(r′, ez) = det
⎛
⎜
⎝

ex ey ez
x′(t) y′(t) 0

0 0 1

⎞
⎟
⎠

= det(y
′(t) 0
0 1

) ex − det(x
′(t) 0
0 1

) ey + det(x
′(t) y′(t)
0 0

) ez

= (y′(t), −x′(t),0) = n+(t)

and the other equality follows from the fact that cross3(w1, w2) = − cross3(w2, w1)
(this follows from a general property of determinants: switching a pair of rows intro-
duces a negative sign).

This gives another way of computing the clockwise and counterclockwise normal vectors
to a plane curve.

***

Optional Problem (Harder). Embed R2
(x,y)

, R2
(y,z)

and R2
(x,z)

into R3
(x,y,z)

as the planes z =
0, x = 0 and y = 0, respectively. Let πz ∶ R3

(x,y,z)
→ R2

(x,y)
be the projection map (x, y, z) ↦

(x, y), and similarly define πx, the projection onto R2
(y,z)

, and πy, the projection onto R2
(x,z)

.

Let P be a parallelogram in R3, and denote its images under the above projections by
Px = πx(P ), Py = πy(P ) and Pz = πz(P ). Show that

area(P ) =
√

area(Px)2 + area(Py)2 + area(Pz)2.

Conclude, by applying the Cauchy-Schwarz inequality or otherwise, that

area(P ) ≥ 1√
3
(area(Px)+area(Py)+area(Pz)) =

√
3⋅Arithmetic Mean(area(Px), area(Py), area(Pz)).

Can you find a P for which equality holds?

2 (Triple Cross Product). Find three vectors u, v, w in R3 such that

(u × v) ×w ≠ u × (v ×w).

(If you are stuck, there is a suggestion at the end of the problem set. But try to find the
vectors yourself — there are many possibilities.)

Solution. For instance, we could take u = (1,0,0), v = (1,0,0) and w = (0,1,0).
Then u × v = 0, so (u × v) ×w = 0 ×w = 0.
On the other hand, v ×w = (0,0,1), and u × (v ×w) = (0,−1,0) ≠ 0.
The optional problem below characterizes the triples of vectors for which equality holds.

***
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Optional Problem (Messy). Show the identity

(u × v) ×w = (u ⋅w)v − (v ⋅w)u

by expanding out in coordinates, and conclude that

u × (v ×w) = (u ⋅w)v − (u ⋅ v)w.

Conclude that (u×v)×w = u×(v×w) if and only if either: u and w are both perpendicular
to v, or u = λw for some λ ∈ R.

Also, conclude that

u × (v ×w) + v × (w × u) +w × (u × v) = 0 (the Jacobi identity).

3 (Examples of Centroids of Curves). In lecture, we learned how to compute the coordinates
of the center of mass of a curve C in R3. When C has uniform unit density (that is, δ = 1),
the center of mass of C is also called the centroid. The coordinates of the centroid of C are
then

1

∫C ds
(∫

C
xds, ∫

C
y ds, ∫

C
z ds) .

A similar expression is true for a curve in R2, omitting the z-coordinate.
Find the centroids of the following curves in R2. You may use symmetry arguments to

reduce the number of computations you need to do.

(a) The line segment parametrized by t↦ (t, mt), t ∈ [0, 1
m], where m > 0 is the slope.

(b) The right semicircle t ↦ (a cos(t), a sin(t)), t ∈ [−π2 , π2 ] of radius a centered at the
origin.

(c) The circle t↦ (b+a cos(t), a sin(t)), t ∈ [0,2π] of radius a centered at (b,0), with b > a
(feel free to write down the answer without computation if you see it).

(d) The piecewise curve C = C1+C2+C3, where C1 is the line segment from (0, b) to (a, b),
C2 the line segment from (a, b) to (a,−b), and C3 the line segment from (a,−b) to
(0,−b), where a > 0 and b > 0. The curve C is a a × 2b rectangle, with the left side
missing.

(e) Find the integral ∫C xds for the parabola segment t↦ (t, t2), t ∈ [0,1].

Solution. The following solutions include fairly complete computations. It was possible
to skip many of these computations by symmetry arguments.

(a) We expect the center of mass to be at ( 1
2m ,

1
2). The parametrization is t↦ (t, mt), t ∈

[0,1/m]. The velocity is v(t) = (1, m), hence the speed is ∥v(t)∥ =
√

1 +m2. The three
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integrals are

∫
C
ds = ∫

1/m

0

√
1 +m2 dt =

√
1 +m2

m
,

∫
C
xds = ∫

1/m

0
t
√

1 +m2 dt =
√

1 +m2 [t
2

2
]
1/m

0

=
√

1 +m2

2m2
,

∫
C
y ds = ∫

1/m

0
mt

√
1 +m2 dt = m

√
1 +m2

2m2
.

Notice that the length is consistent with Pythagoras’ theorem, since the line segment
is the hypotenuse of a right triangle with side lengths 1 and 1/m.

The x-coordinate of the centroid is

√
1 +m2

2m2
(
√

1 +m2

m
)
−1

= m

2m2
= 1

2m
.

Similarly, the y-coordinate is

m
√

1 +m2

2m2
(
√

1 +m2

m
)
−1

= m2

2m2
= 1

2
.

The centroid is located at the point

( 1

2m
,
1

2
) .

as expected.

(b) By symmetry, the centroid should be on the x-axis.

The parametrization is t ↦ (a cos(t), a sin(t)), t ∈ [−π/2, π/2]. The velocity is v(t) =
(−a sin(t), a cos(t)), the speed is ∥v(t)∥ =

√
a2 sin2(t) + a2 cos2(t) = a. The three inte-

grals are

∫
C
ds = ∫

π/2

−π/2
adt = aπ,

∫
C
xds = ∫

π/2

−π/2
a cos(t)adt = a2 [sin(t)]π/2

−π/2
= a2(1 − (−1)) = 2a2,

∫
C
y ds = ∫

π/2

−π/2
a sin(t)adt = a2 [− cos(t)]π/2

−π/2
= a2(−0 + 0) = 0.

The centroid is at the point

(2a2

πa
, 0) = (2a

π
, 0) .

(c) The centroid should be at the center of the circle, which is at (b,0).
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The path is t↦ (b+a cos(t), a sin(t)), t ∈ [0,2π]. The velocity is v(t) = (−a sin(t), a cos(t))
and the speed is ∥v(t)∥ =

√
a2 sin2(t) + a2 cos2(t) = a. The three integrals are

∫
C
ds = ∫

2π

0
adt = 2πa,

∫
C
xds = ∫

2π

0
(b + a cos(t))adt = 2πab + a2∫

2π

0
cos(t)dt = 2πab,

∫
C
y ds = ∫

2π

0
a sin(t)adt = 0.

The centroid is at the point

(2πab

2πa
, 0) = (b,0).

(d) Triple the fun! Parametrize the curves C1, C2, C3 as follows:

Curve Parametrization v(t) ∥v(t)∥
C1 t↦ (t, b), t ∈ [0, a] (1,0) 1
C2 t↦ (a, b − t), t ∈ [0,2b] (0,−1) 1
C3 t↦ (a − t,−b), t ∈ [0, a] (−1,0) 1

Then,

∫
C
ds = ∫

a

0
dt + ∫

2b

0
dt + ∫

a

0
dt = 2(a + b),

∫
C
xds = ∫

a

0
t dt + ∫

2b

0
adt + ∫

a

0
(a − t)dt

= [t
2

2
]
a

0

+ 2ab + [at − t
2

2
]
a

0

= a
2

2
+ 2ab + a2 − a

2

2
= a2 + 2ab,

∫
C
y ds = ∫

a

0
b dt + ∫

2b

0
b − t dt + ∫

a

0
−b dt

= ab + [bt − t
2

2
]
2b

0

− ab

= 2b2 − 2b2 = 0.

Therefore, the coordinates of the centroid are

(a
2 + 2ab

2(a + b) ,0) .

A good shortcut for this part uses the following lemma:

Lemma. Let C1, . . . ,Cn be curves in R2 or R3. For each i = 1, . . . , n, let Mi denote
the mass of the curve Ci, and let Ri denote the coordinates of its center of mass. Then
the coordinates of the center of mass of the union of the curves Ci is equal to

M1R1 +⋯ +MnRn

M1 +⋯ +Mn

.
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Proof. Suppose that Ci are curves in R3. For each i, we have

MiRi = (∫
Ci

xδ(x, y, z)ds, ∫
Ci

y δ(x, y, z)ds, ∫
Ci

z δ(x, y, z)ds) =∶ ∫
Ci

r δ(x, y, z)ds.

Therefore,

M1R1 +⋯ +MnRn = ∫
C1

r δ(x, y, z)ds +⋯ + ∫
Cn

r δ(x, y, z)ds = ∫
C
r δ(x, y, z)ds.

and
M1R1 +⋯ +MnRn

M1 +⋯ +Mn

. = ∫C r δ(x, y, z)ds
∫C δ(x, y, z)ds

= Center of Mass(C).

For the curves C1, C2, C3, we have (since δ = 1)

M1 = a, M2 = 2b, M3 = a;

R1 = (a/2, b), R2 = (a,0), R3 = (a/2,−b).

Therefore, the centroid is at the point

a(a/2, b) + 2b(a,0) + (a(a/2,−b)
2(a + b) = (a2/2 + 2ab + a2/2, ab + 0 − ab)

2(a + b) = (a
2 + 2ab

2(a + b) , 0) .

(e) The path is t ↦ (t, t2), t ∈ [0,1]. The velocity is v(t) = (1, 2t) and the speed is

∥v(t)∥ =
√

1 + 4t2. Therefore,

∫
C
xds = ∫

1

0
t
√

1 + 4t2 dt.

Let u = 1 + 4t2, du = 8t dt. Making the u-substitution, the integral becomes

1

8 ∫
5

1

√
udu = 1

8
[2

3
u3/2]

5

1

= 5
√

5 − 1

12
.

***

Optional Problem (Harder). Find the coordinates of the centroid of the parabola segment in
part (e). The standard approach to the integrals involved uses sinh-substitution (!).

4 (Surfaces of Revolution). A surface of revolution is the surface obtained by rotating a
plane curve C about a line ` (called the axis of rotation) that is coplanar with C.

To obtain a surface according to the definition in lecture, we require that ` does not intersect C, ex-

cept possibly at the endpoints of C. To obtain a smooth surface (except for at most finitely many nons-

mooth curves, which do not affect surface area), we require that there exists a parametrization t ↦ r(t) =

(x(t), z(t)), t ∈ [a, b] of C with r′(t) ≠ 0 for all t (with at most finitely many exceptions).

Suppose that C lies in the xz-plane with x > 0, ` is the z-axis, and fix a parametrization
of C as above.
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(a) Find the unit vector that is obtained by rotating ex counterclockwise by θ radians
about the z-axis.

(b) Using the parametrization t↦ r(t) = (x(t), z(t)), t ∈ [a, b] of C, parametrize the curve
obtained by rotating C counterclockwise by θ radians about the z-axis (it will lie in the
plane spanned by ez and the vector from part (a)). Your parametrization will involve
the functions x(t) and z(t).

(c) Parametrize the surface of revolution of C, taking one of the parameters to be the
parameter t of C, and the other parameter to be the angle θ. What do the t- and
θ-coordinate curves look like?

(d) Find the tangent vectors Tt(t, θ) and Tθ(t, θ) at all points.

(e) Find the normal N(t, θ) = Tt(t, θ) ×Tθ(t, θ) and its magnitude ∥N(t, θ)∥ at all points.

(f) Show that the surface area of the surface of revolution of C is equal to

2π∫
b

a
x(t)

√
x′(t)2 + z′(t)2 dt = 2π∫

C
xds.

(g) Conclude that the following theorem holds:

Theorem (Pappus). The surface area of the surface of revolution of a curve C is equal
to the product

arclength(C) ⋅ distance travelled by the centroid of C.

(h) For each of the curves in Problem 3, sketch its surface of revolution about the z-axis
and find the surface area using Pappus’s theorem.

Solution.

(a) From the geometry, we see that cos(θ)ex + sin(θ)ey is such a vector.

(b) The parametrization of C in the xz-plane may be written

t↦ x(t)ex + z(t)ez, t ∈ [a, b].

To parametrize the rotated curve, replace ex by the vector found in part (a), obtaining
the parametrization

t↦ ( x(t) cos(θ), x(t) sin(θ), z(t) ) , t ∈ [a, b].

(c) Allowing θ to be arbitrary in the parametrization from part (b) yields a parametrization
of the surface of revolution:

(t, θ) ↦ ( x(t) cos(θ), x(t) sin(θ), z(t) ) , t ∈ [a, b], θ ∈ [0,2π].
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(d) We compute

Tt(t, θ) = (x′(t) cos(θ), x′(t) sin(θ), z′(t)) ,
Tθ(t, θ) = (−x(t) sin(θ), x(t) cos(θ), 0) .

(e) Computing the cross product,

Tt ×Tθ = det
⎛
⎜
⎝

ex ey ez
x′(t) cos(θ) x′(t) sin(θ) z′(t)
−x(t) sin(θ) x(t) cos(θ) 0

⎞
⎟
⎠

= (0 − z′(t)x(t) cos(θ), −(0 + z′(t)x(t) sin(θ)), x(t)x′(t) cos2(θ) + x(t)x′(t) sin2(θ))
= (−x(t)z′(t) cos(θ), −x(t)z′(t) sin(θ), x(t)x′(t)) .

Therefore,

∥N(t, θ)∥2 = x2(t)z′(t)2 cos2(θ) + x2(t)z′(t)2 sin2(θ) + x2(t)x′(t)2

= x2(t) (x′(t)2 + z′(t)2)
and

∥N(t, θ)∥ = x(t)
√
x′(t)2 + z′(t)2.

(f) The surface area of the surface of revolution is therefore equal to

∬
S
dS = ∫

b

a
∫

2π

0
∥N(t, θ)∥dθdt = 2π∫

b

a
x(t)

√
x′(t)2 + z′(t)2 = 2π∫

C
xds.

(g) The centroid of C travels around the z-axis in a circle with radius equal to its x-
coordinate. Therefore,

arclength(C)⋅distance travelled by the centroid of C = (∫
C
ds)(2π

∫C xds
∫C ds

) = 2π∫
C
xds,

and the expression on the right is equal to the surface area of the surface of revolution
of C from part (f).

It is worth noticing that if the centroid of C is not clear from symmetry, it is compu-
tationally simpler to find ∫C xds. The advantage of the above formulation of Pappus’
theorem is that often centroids of symmetric shapes are simple to find without com-
putation (we have seen a few examples in Problem 3!).

(h) (A) The surface of revolution is a cone:
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The coordinates of the centroid are ( 1

2m
,

1

2
). The arclength of the line segment

is

√
1 +m2

m
. Therefore, the surface area of the cone is

√
1 +m2

m
2π

1

2m
= π

m

√
1 + 1

m2
.

(B) The surface of revolution is a sphere of radius a:

The coordinates of the centroid are (2a

π
,0). The arclength of a semicircle of

radius a is πa. Therefore, the surface area of the sphere is

πa ⋅ 2π2a

π
= 4πa2,

agreeing with what we found before!

(C) The surface of revolution is a torus with radii a and b:

The coordinates of the centroid are (b,0). The arclength of the generating circle
is 2πa. Therefore, the surface area of the torus is

2πa ⋅ 2πb = 4π2ab.

(D) The surface of revolution is a cylinder with caps on top and bottom:
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The coordinates of the centroid are (a
2 + 2ab

2(a + b) , 0), and the arclength is 2(a + b),
so the surface area of the surface of revolution is

2πa2 + 4πab.

Notice that this is the sum of the surface area of the top and bottom disks,
together with the side of the cylinder.

(E) The surface of revolution is a paraboloid.

In this instance, the coordinates of the centroid are not easy to compute, but we

have found that ∫
C
xds = 5

√
5 − 1

12
, so the surface area is

2π
5
√

5 − 1

12
= π5

√
5 − 1

6
.
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