
MTHE 227 Problem Set 8 Solutions

1 (Path-Connected and Simply-Connected). Which of the following spaces are path-connected?
Which are simply-connected? (For cases that are not path-connected, draw two points that can-

not be joined by a path. For cases that are path- but not simply-connected, draw a simple closed

curve (i.e. a loop) that cannot be continuously deformed to a point while staying in the region.

For cases that are simply-connected, it is enough to state this (you do not have to justify it).)

(a) R2 with the circle x2 + y2 = 1 removed.

(b) R3 with the circle x2 + y2 = 1, z = 0 removed.

(c) The annulus {(x, y) ∶ 1 < x2 + y2 < 2} in R2.

(d) R3 with a point removed.

(e) R3 with a line removed.

(f) R3 with the helix (cos t, sin t, t), t ∈ [0, 4π] removed.

Solution.

(a) Not path-connected. Take one point inside the circle, and one point outside.

P

Q

(b) Path-connected, but not simply-connected. Take a loop around the missing circle.
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(c) Path-connected, but not simply-connected. Take a loop enclosing the missing inside
disk.

(d) Simply-connected.

(e) Path-connected, but not simply-connected. Take a loop around the missing line.

(In the above picture, the line extends infinitely in both directions!)

(f) Simply-connected.

2 (Curl Test). In lecture, we have shown the following theorem:

Theorem (Curl Test). Let F(x, y) = ( F1(x, y), F2(x, y) ) be a vector field defined in a
simply-connected region X. If

curlF ∶=
∂F2

∂x
−
∂F1

∂y
= 0

at every point of X, then F is conservative.
Conversely, let G(x, y) = (G1(x, y), G2(x, y) ) be a vector field defined in any region X

(not necessarily simply-connected). If curlG(x, y) ≠ 0 for some point (x, y) in X, then G is
not conservative.

Applying the curl test, show that the following vector fields defined on R2 are not con-
servative.
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(a) ( x sin(y2), y sin(x2) ).

(b) ( 2x + 3y2 + 5x3, 5y + 3x2 + 2y3 ).

On the other hand, show that the following vector fields defined are conservative, again
applying the curl test:

(c) ( ln y +
y

x
, lnx +

x

y
) on the region with x > 0, y > 0 (the first quadrant).

(d) ( (1 + xy) exy, x2exy ) on R2.

Remark. We found potential functions for the vector fields of parts (c) and (d) in Problem
Set 4: possibilities are y lnx + x ln y for part (c) and xexy for part (d).

Solution.

(a) We have
∂F2

∂x
= y cos(x2)2x,

∂F1

∂y
= x cos(y2)2y.

So
curlF = 2xy(cos(x2) − cos(y2)).

At (
√
π,

√
π/2), the curl is equal to

√
2π(cos(π) − cos(π/2)) =

√
2π(−1 − 0) ≠ 0,

so the field is not conservative.

(b) We have
∂F2

∂x
= 6x,

∂F1

∂y
= 6y.

So
curlF = 6(x − y).

At (x, y) = (1,0), the curl is nonzero, so the field is not conservative.

(c) Note: This problem was originally not stated correctly, since the components of F
aren’t defined on the lines x = 0 and y = 0 (and cannot be extended even continuously
to these lines — F1 approaches infinity as x approaches 0, and F2 approaches infinity as
y approaches 0!). Moreover, the functions ln(x) and ln(y) are not defined for negative
x and y. So, the problem should be stated for the first quadrant x > 0, y > 0.

For points in the first quadrant, we have

∂F2

∂x
=

1

x
+

1

y
,

∂F1

∂y
=

1

y
+

1

x
.

So

curlF = (
1

x
+

1

y
) − (

1

y
+

1

x
) = 0

at every point with x > 0, y > 0. Since the region x > 0, y > 0 is simply-connected, the
curl test guarantees existence of a potential function.
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(d) We have

∂F2

∂x
= 2xexy + x2y exy,

∂F1

∂y
= xexy + (1 + xy)xexy = 2xexy + x2yexy.

The curl again vanishes at every point, and we conclude that the field is conservative.

3 (Curl Test II). Let F be the vector field

F(x, y) = (
−y

x2 + y2
,

x

x2 + y2
) =

1

r
eθ(r, θ)

defined for (x, y) in R2 with (x, y) ≠ (0,0).

(a) Check that curlF = 0 for all (x, y) ≠ (0,0).

(b) Let C be the unit circle centered at the origin, oriented counterclockwise. Check that

∫
C
F ⋅ dr = 2π.

(c) The curl test seems to imply that F is conservative, as curlF = 0 at all points where

F is defined by part (a). If F was conservative, we would have ∫
C
F ⋅ dr = 0 for every

closed curve C. Why doesn’t part (b) then contradict the curl test?

Now, let G be the same vector field, but restricted to the smaller region Y = {(x, y) ∶ x > 0}.

(d) Check that

G = ∇(arctan(
y

x
)) .

(e) Recall that arctan(y/x) = θ(x, y) is the polar angle of the point (x, y). Conclude by
the fundamental theorem of calculus for line integrals that for any curve C from point
Q to point P in Y ,

∫
C
G ⋅ dr = θ(P ) − θ(Q).

Remark. For any closed curve, the integral

1

2π ∫C
F ⋅ dr

is called the winding number of C about the origin.

Solution.

(a) Computing,

∂F2

∂x
=

1 ⋅ (x2 + y2) − x(2x)

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
,

∂F1

∂y
= −

1 ⋅ (x2 + y2) − y(2y)

(x2 + y2)2
= −

x2 − y2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
,

So curlF =
y2−x2

(x2+y2)2 −
y2−x2

(x2+y2)2 = 0 for all (x, y) ≠ (0,0).
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(b) Parametrize the circle by t↦ (cos(t), sin(t)), t ∈ [0,2π]. We have v(t) = (− sin(t), cos(t)),
and

F(r(t)) = (
− sin(t)

cos2(t) + sin2(t)
,

cos(t)

cos2(t) + sin2(t)
) = (− sin(t), cos(t)).

Taking the dot product,

F(r(t)) ⋅ v(t) = sin2(t) + cos2(t) = 1.

The work is equal to

∫

2π

0
1dt = 2π.

(c) The vector field F is not defined at (x, y) = (0,0), and cannot be extended over that
point (the magnitude goes to infinity). Since R2 without (0,0) is not simply connected,
the curl test is not conclusive.

(d) Taking the partials,

∂ arctan(y/x)

∂x
=

1

1 + (y/x)
2

−y

x2
=

−y

x2 + y2
= F1,

∂ arctan(y/x)

∂y
=

1

1 + (y/x)
2

1

x
=

x

x2 + y2
= F2.

Note Y = {(x, y) ∶ x > 0} does not contain (0,0), and is now simply-connected, so the
curl test does apply, and should imply that the vector field is conservative — this is
consistent with our finding.

(e) This follows immediately from the fundamental theorem for line integrals. The con-
clusion is interesting, however. The line integral ∫CG ⋅dr measures the angle between
the starting and ending points of the path C.

4 (Using Green’s Theorem to Compute Area). Define the following vector fields on R2:

F1(x, y) = (−
y

2
,
x

2
) , F2(x, y) = (−y,0), F3(x, y) = (0, x).

Let C be a simple closed curve, and let R be the region bounded by C. Orient C so that R
appears on the left as one goes around C.

(a) Apply Green’s Theorem to show that ∫
C
Fi ⋅ dr = Area(R) for each i = 1,2,3.

(b) (Ellipse) Find the area bounded by the ellipse
x2

a2
+
y2

b2
= 1 (try F1).
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(c) (Arc of a Cycloid) Near the beginning of the course, we have seen that the path of a
fixed point on the circumference of a unit circle rolling without slipping at unit speed
may be parametrized by

t↦ (t − sin(t), 1 − cos(t)), t ∈ R.

As t varies in [0,2π], a single arc of the motion is traced out. Let C1 denote this arc.

The curve C1 is not closed. However, we can still apply Green’s theorem to the piece-
wise curve C = C1 +C2, where C2 is the line segment from (2π,0) to (0,0)! Compute

∫C F2 ⋅ dr, and explain why this is equal to negative of the area under the arc of the
cycloid.

(d) (The Folium of Descartes) Find the area of the region bounded by the loop of the
folium of Descartes x3 + y3 = 3xy.

The loop may be parametrized (with orientation as in Green’s theorem) by

t↦ (
3t

1 + t3
,

3t2

1 + t3
) , t ∈ [0,∞)

(try F3 — the computation will take a little work).

Remark. The trick used in part (c) — closing up a curve to make it possible to apply Green’s
theorem — is a useful one.

Solution.

(a) We compute that

curlF1 =
∂

∂x

x

2
−
∂

∂y

−y

2
=

1

2
−
−1

2
= 1,

curlF2 =
∂

∂x
0 −

∂

∂y
− y = 0 − (−1) = 1,

curlF3 =
∂

∂x
x −

∂

∂y
0 = 1 − 0 = 1.

By Green’s theorem for Work, for each i = 1,2,3,

∫
C
Fi ⋅ dr =∬

R
curlFi dA =∬

R
1dA = Area(R).

(b) The ellipse may be parametrized by t↦ (a cos(t), b sin(t)), t ∈ [0,2π]. The velocity is
v(t) = (−a sin(t), b cos(t)). We have

F1(r(t)) ⋅ v(t) = (−
b sin(t)

2
,
a cos(t)

2
) ⋅ (−a sin(t), b cos(t)) =

ab

2
.

Therefore,

∫
C
F1 ⋅ dr = ∫

2π

0

ab

2
dt = abπ.
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(c) For C1 (the cycloid arc), we have v(t) = (1 − cos(t), sin(t)), and

F2(r(t))⋅v(t) = (−(1−cos(t),0)⋅(1−cos(t), sin(t) = −(1−cos(t))2 = −1+2 cos(t)−cos2(t).

The work is then

∫
C1

F2 ⋅ dr = ∫
2π

0
−1 + 2 cos(t) − cos2(t)dt = −2π + 0 − π = −3π.

For C2 (the segment along the x-axis), the work done is zero, since the field F2 vanishes
along the x-axis. Indeed, parametrize as t ↦ (2π − t,0), t ∈ [0,2π]. The velocity is
v(t) = (−1,0), and

F2(r(t)) ⋅ v(t) = (0,0) ⋅ (−1,0) = 0.

Therefore,

∫
C
F2 ⋅ dr = ∫

C1+C2

F2 ⋅ dr = −3π + 0 = −3π.

Finally, since the curve C has the region it encloses on the right, to apply Green’s
theorem we need to reverse the orientation of C. We have seen that

∫
−C

F2 ⋅ dr = −∫
C
F2 ⋅ dr = 3π,

so the area enclosed by C is equal to 3π.

(d) The velocity of the provided parametrization is

dx

dt
=

3(1 + t3) − 3t(3t2)

(1 + t3)2
=

3 − 6t3

(1 + t3)2
,

dy

dt
=

6t(1 + t3) − 3t2(3t2)

(1 + t3)2
=

6t − 3t4

(1 + t3)2
.

We have

F3(r(t)) ⋅ v(t) = (0,
3t

1 + t3
) ⋅ v(t) =

3t

1 + t3
6t − 3t4

(1 + t3)2
=

3t2(6 − 3t3)

(1 + t3)3

and so the work integral is

∫
C
F3 ⋅ dr = ∫

∞

0

3t2(6 − 3t3)

(1 + t3)3
dt.

Let u = 1 + t3, du = 3t2dt. Then the integral becomes

∫

∞

1

9 − 3u

u3
du = ∫

∞

1

9

u3
−

3

u2
du.

Both integrands decay rapidly as the upper limit is taken to infinity, so both converge
and we can split the integral into two (it is also possible to find the antiderivative
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(− 9
2u2 +

3
u) in a single step, so the splitting is not necessary, it is just to make the

computations simpler to carry out and follow). For the first part,

∫

∞

1

9du

u3
= lim
M→∞

∫

M

1

9du

u3
= lim
M→∞

[−
9

2

1

u2
]
M

1

= lim
M→∞

(−
9

2

1

M2
+

9

2
) =

9

2
.

For the second part,

∫

∞

1
−

3du

u2
= lim
M→∞

∫

M

1
−

3du

u2
= lim
M→∞

[
3

u
]
M

1

= lim
M→∞

(
3

M
− 3) = −3.

So that

area(R) = ∫
C
F3 ⋅ dr =

9

2
− 3 =

3

2
.
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