MTHE 227 PROBLEM SET 7 SOLUTIONS

1 (Jacobian of a Linear Map). For z(u,v) = au + bv and y(u,v) = cu + dv, show that

d(z,y) (0x/Ou Ox[Ov\ [a b
A(u,v) ~ \Oylou dyfov] \c d)

Thus, the Jacobian of the map T': R%M) - ]R%x’y) given by (u,v) » (au +bv, cu + dv) is
everywhere equal to T itself (and, as discussed in lecture, any linear map from R? to itself
can be written in this form). This fact is consistent with the intuition that the Jacobian of
T at (ug,vo) is the linear map that best approximates T at (ug,vo). (If T is itself linear,
then the best linear approximation is itself!)

Solution. This problem has an interesting conclusion, but the solution is quite short —
we are simply asked to find four partial derivatives:

dr O(au+bv) "

ou ou ’
Oz _ O(au+bv) b
ov v -
Oy _9(cu+dv) _

ou ou -
dy _ O(cu+dv) 4
ov v o

2 (Geometry of Linear Maps). Let

(0

be a 2 x 2 matrix with det A = ad — bc # 0. In linear algebra, one proves that A may be
brought to the matrix

10

01

by finitely many of the following three operations (called elementary row operations):
(Op. 1) Switching two rows.
(Op. 2) Multiplying every entry of a row by a nonzero number.
(Op. 3) Adding a row to another row.

(More generally, any matrix may be brought to its reduced row-echelon form (rref) by a
succession of the above three operations. All matrices with nonzero determinant have the
identity matrix as their rref.)



(a) Define the following matrices:

ae(1) mon-(3 ). maa-(y 8). mo-(i ) me-(i )

Check that multiplying A on the left by:!

(i) E; switches the two rows of A;

(ii) F2(A,1) multiplies every entry of the first row of A by A;

(iv) E3(1) adds the second row to the first row; and

)
)
(iii) F2(A,2) multiplies every entry of the second row of A by A;
)
(v) E3(2) adds the first row to the second row.

(b) Conclude from part (a), and the linear algebra fact that A may be brought to the iden-
tity matrix by a finite sequence of elementary row operations, that there exists a se-
quence of matrices My, ..., M,, with each M; being one of E;, E5(\, 1), Ey(A,2), E3(1)
or F3(2), so that

MT Mr—l M2 MlA = ((:; ?) .

(c) Check that the inverses of the elementary matrices are:
01 3 0 10 1 -1 1 0
-1 _ -1_ [ -1 _ -1 _ -1 _
El - (1 0)7 E2(>‘7 1) - (0 1)7 E2(>‘72) - (0 %)7 E3(1) - (0 1 )7 E3(2) - (_1 1) :

Optional Problem. Check that the inverses of elementary matrices may be written in
terms of elementary matrices:

E7l'=E,
EQ()‘7 1)_1 = E2 (%7 ]-) )
Fy(),2)! :@(%,2),

E5(1)™" = Ex(-1,1) E5(1) Ex(-1,1),
E3(2)7" = Ey(-1,2) E3(2) Ex(-1,2).

(d) Recall that a 2 x 2 matrix defines a linear transformation on R? by

[ 00)-(=rm).

For each of E[!, Eo(\ 1)71, Fa(\,2)71, Es(1)™! and E5(2)7!, draw the image of the
unit square [0, 1] x [0, 1] under the associated linear transformation. Identify each one
as being a scaling, shear, or reflection about the diagonal x = y.

Note: Multiplying A on the left by E; means E; - A.
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(e) Conclude that an arbitrary linear transformation R? — R? with nonzero determinant
may be realized as a composition of finitely many scalings, shears, and reflections about
the diagonal.

(f) Draw the image of the unit square under each of the following linear maps, and decom-
pose each of the linear maps into a sequence of scalings, shears, and reflections about
the diagonal (row-reduce the matrix, keeping track of the steps!):

(g o 9)

(a) For this part, we simply carry out the five matrix multiplications:

Solution.

Q) 0 1Yfa b0\ (O+c O+d) ([c d

Y11 oofle a) " \a+0 b+0) "\ b)
aiy (A O)(@ B)-(ra+0 M40\ _(xa Ab
Wlo 1/\e a)  Vo+e o0+a)™\e a)
(iif) 1 0Yfa b)Y [a+0 b+0) (a b
Wlo Mle d) 7 osre 0+xd) " \xe 2a)
() 1 1\[{a b _fa+c b+d _fa+c b+d
"ilo 1\e d) " \o+e 0+a) 7\ ¢ d )

<V>1Oab_a+0b+0_a b

1 1)\c d) \a+c b+d] \a+b c+d)

(b) Since every operation of type (Op. 1), (Op. 2), (Op. 3) may be realized by a left-
multiplication by one of the matrices E;, Ea(\, 1), Ea(A,2), E3(1) and E3(2), and
every 2 x 2 matrix with nonzero determinant may be brought to the identity matrix by

a finite number of operations of this type, we conclude that there exists a sequence of
matrices as claimed.

(c) More matrix multiplication! It is enough to check that E;1- E; = I, where E; is a type
of elementary matrix, E;! is its claimed inverse, and [ is the 2x2 identity matrix (note:
it is then automatically true that also E;- E;! = I, a proposition from linear algebra of



finite-dimensional vector spaces).
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1 0\(1 0y (1+0 0+0\ (1 0

-1 1J\1 1) \-1+1 0+1) \0o 1)

(d) The linear transformation ((1) (1)) sends the unit vectors ((1)) and ((1)) to

0 1\(1\ (o0 L (0 1)(o)_(

1 oflo)"\1) 1 of\1) 7o

An arbitrary point (z,y) gets sent to (y,z). This is a reflection about the diagonal.

O = S = Oyl = O

1
The linear transformation (8 (1)) sends the unit vectors ((1)) and ((1)) to

(6 5)0e)-(5) e G3)0)-C0)

This is a scaling by 1/A along the x-coordinate.

A few examples — for A = 2, we have a shrinking along the x-coordinate by a factor of
2 (in other words, a scaling by a factor of 1/2):



E31(2,1)

For A = 1/3, we have an expansion along the x-coordinate by a factor of 3:

For the interesting case of A\ = —1, we have a reflection about the y-axis (i.e. a scaling
along the xz-coordinate by a factor of —1):

Similarly, £51(),2) is a scaling along the y-coordinate by 1/A. For example, for A = -3,
the transformation looks like a reflection about the x-axis and a stretch by a factor of
2:

Eil(_%u 2)



The linear transformation ((1) 11) sends the unit vectors ((1)) and ((1)) to

o 66 6 6)-0)

This is a shear parallel to the z-axis and going to the left:

E5'(1)

Similarly, (_11 (j) sends the unit vectors ((1)) and ((1)) to

6 e (G)6)-()

This is a shear parallel to the y-axis and going down:

B3t (1)

(e) From part (b), we have

MTMT,l"'MQMlA = (é (1))

Multiplying on both sides by

(M, M,y MyMy) ™ = M7 MG M M



we have

10

A= (MM, - MyM,) ™ My M,_q--MyMy A = (M, M,y My M) ™" (0 |

From part (d), each M ! is a scaling, shear, or reflection about the diagonal, and the
claim follows.

For both parts, we begin by row-reducing the matrix using (Op. 1), (Op. 2) and (Op. 3),
keeping track of the steps. For part (i),

2 0\ 22G0 (1 0) 1y (1 0) B (1 0) B4 (10
16 16 -1 -6 0 -6 01
Therefore,
1 1 (2 0\ (10
EQ(_672)E3(2)E2(_172)E2(§71) (1 6)_(0 1)
and so
2 0 1 _ _ _ 1
(1 6)=E21<§,1>E21<—1,2>E31<2>E21<—g,2>-

The unit vectors ((1)) and (?

906 = (9)0)-6)

) are sent to

r

) = M MG M M



A sketch of the linear transformation is:

(i 5)

On the other hand, let’s keep track what happens under the decomposition

2 0\ 1 .., I
(1 6):E2 (5:1) Bx'(-1,2) B5'(2) B3 (=, 2).



The linear transformation is applied right-to-left, so we begin with £ 1(—%, 2), which
is a scaling by —6 along the y-axis:



This is followed by E3!(2), which is a shear down:

E51(2)
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Then, E;'(-1,2) is a reflection about the z-axis (or scaling by -1 along y-coordinate):

E;'(-1,2)

[\
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Finally, Egl(%, 1) is a stretch by 2 along the z-axis:

1 0

0 -1 B 1 0\ Ex(-1,2) {1 O
1 0 0 -1 0 1)

Therefore, we get the decomposition

For part (ii), the matrix (O ) row-reduces as:

0 -1 1 e
() mman

You may recognize from class that this is the matrix of a counterclockwise rotation by
7/2 radians. The transformation looks like:
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The decomposition into inverses of elementary matrices decomposes the rotation into
two reflections.

First, E;1(-1,2) is a reflection about the z-axis:

E2_1(_17 2)

Then, E[! is a reflection about the diagonal:

It is quite interesting that a rotation can be realized by two reflections.
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3 (Double Integral Over a Parallelogram, Once Again). Recall the parallelogram R with
vertices (1,1), (3,3), (5,2), (7,4) from Problem Set 5:

y==x y=x-3

The form of the equations of the boundary lines suggests that

X

u(z,y) =y -, v(x,y)=y—1

is a good change of variables for this problem.
This describes the inverse map 7-1: R%z 0~ ]R%u o)

(a) What is the region R* = T-1(R) in R%u 0!
(b) Solve for z = x(u,v) and y = y(u,v) as functions of v and v. (This amounts to finding
the inverse of 71, or, in other words, finding 7'.)

z,y)

(c) Compute the Jacobian A v)

(d) Compute [[,(y—2)?'®dA by applying the change of variables theorem.

Solution.

(a) The region R~ is the rectangle [-3, 0] x [3/4, 9/4].

There are many ways to justify this. For one, we have shown in lecture that linear maps
take parallelograms to parallelograms, so the region R* is a parallelogram, determined
by its four vertices. The vertices of R go to

(1 -02)
w5 D)oy
efes2-9-(5)
(1,1)»(4—7, 4-5):(—3, %)

These are the vertices of the rectangle [-3, 0] x [3/4, 9/4].
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(b)

A clean way to do this is to write down the matrix of 7-! and find its inverse.

The matrix of 771 is
_i 1]

¢ b) with nonzero determinant is —— (_dc _ab). Therefore,

c d

L (1 -1)\_ 4(1 1
1+ 1\; -1) 3\ 1)

Writing out the variables, we have found that

The inverse of a matrix ( et

the matrix of T is

For another possible solution, we could have played around with the equations. We
have

v—U=(y—§)—(y—I)=Zw,
SO 4
mz—g(u—v);
and
dv-u=(4y-z)-(y-z)=3y,
SO

4 u
y= _§(Z_U)'

(For yet another possible approach, we could have converted the system of linear
equations into matrix form and solved.)

By Problem 1, the Jacobian of 7" is T itself.

d(x,y) _7 4 (1 —1)'

o(u,v) R

4

The determinant of 7" (and therefore the determinant of the Jacobian) is equal to —3.
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(d) By the change of variables theorem for double integrals (and Fubini’s theorem),

I(z,y)
_ 2016dA:[f 2016 ’
/fR(y ?) Y B(u,v)
0 ,9/4 4
zf f u? — dv du
-3 J3/4 3
(99 g,
3J-3 4 4
4 6 [ 2017 u=0
" 34 [2017]u=_3
2,32017
2017

det dA

Remark. This example illustrates why it is necessary to take the absolute value of
det ggzzg in the change of variables theorem — the transformation may be orientation-

reversing (and so have a negative determinant), as is the case in this example!
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