
MTHE 227 Problem Set 7 Solutions

1 (Jacobian of a Linear Map). For x(u, v) = au + bv and y(u, v) = cu + dv, show that

∂(x, y)
∂(u, v) ∶= (∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v) = (a b
c d

) .

Thus, the Jacobian of the map T ∶ R2
(u,v)

→ R2
(x,y)

given by (u, v) ↦ (au + bv, cu + dv) is

everywhere equal to T itself (and, as discussed in lecture, any linear map from R2 to itself
can be written in this form). This fact is consistent with the intuition that the Jacobian of
T at (u0, v0) is the linear map that best approximates T at (u0, v0). (If T is itself linear,
then the best linear approximation is itself!)

Solution. This problem has an interesting conclusion, but the solution is quite short —
we are simply asked to find four partial derivatives:

∂x

∂u
= ∂(au + bv)

∂u
= a,

∂x

∂v
= ∂(au + bv)

∂v
= b,

∂y

∂u
= ∂(cu + dv)

∂u
= c,

∂y

∂v
= ∂(cu + dv)

∂v
= d.

2 (Geometry of Linear Maps). Let

A = (a b
c d

)

be a 2 × 2 matrix with detA = ad − bc ≠ 0. In linear algebra, one proves that A may be
brought to the matrix

(1 0
0 1

)

by finitely many of the following three operations (called elementary row operations):

(Op. 1) Switching two rows.

(Op. 2) Multiplying every entry of a row by a nonzero number.

(Op. 3) Adding a row to another row.

(More generally, any matrix may be brought to its reduced row-echelon form (rref) by a
succession of the above three operations. All matrices with nonzero determinant have the
identity matrix as their rref.)
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(a) Define the following matrices:

E1 = (0 1
1 0

) , E2(λ,1) = (λ 0
0 1

) , E2(λ,2) = (1 0
0 λ

) , E3(1) = (1 1
0 1

) , E3(2) = (1 0
1 1

) .

Check that multiplying A on the left by:1

(i) E1 switches the two rows of A;

(ii) E2(λ,1) multiplies every entry of the first row of A by λ;

(iii) E2(λ,2) multiplies every entry of the second row of A by λ;

(iv) E3(1) adds the second row to the first row; and

(v) E3(2) adds the first row to the second row.

(b) Conclude from part (a), and the linear algebra fact that A may be brought to the iden-
tity matrix by a finite sequence of elementary row operations, that there exists a se-
quence of matrices M1, . . . ,Mr, with each Mi being one of E1, E2(λ,1), E2(λ,2), E3(1)
or E3(2), so that

MrMr−1⋯M2M1A = (1 0
0 1

) .

(c) Check that the inverses of the elementary matrices are:

E−1
1 = (0 1

1 0
) , E2(λ,1)−1 = (

1
λ 0
0 1

) , E2(λ,2)−1 = (1 0
0 1

λ

) , E3(1)−1 = (1 −1
0 1

) , E3(2)−1 = ( 1 0
−1 1

) .

Optional Problem. Check that the inverses of elementary matrices may be written in
terms of elementary matrices:

E−1
1 = E1,

E2(λ,1)−1 = E2 (
1

λ
,1) ,

E2(λ,2)−1 = E2 (
1

λ
,2) ,

E3(1)−1 = E2(−1,1)E3(1)E2(−1,1),
E3(2)−1 = E2(−1,2)E3(2)E2(−1,2).

(d) Recall that a 2 × 2 matrix defines a linear transformation on R2 by

(a b
c d

)(x
y
) = (ax + by

cx + dy) .

For each of E−1
1 , E2(λ,1)−1, E2(λ,2)−1, E3(1)−1 and E3(2)−1, draw the image of the

unit square [0,1]× [0,1] under the associated linear transformation. Identify each one
as being a scaling, shear, or reflection about the diagonal x = y.

1Note: Multiplying A on the left by Ei means Ei ⋅A.
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(e) Conclude that an arbitrary linear transformation R2 → R2 with nonzero determinant
may be realized as a composition of finitely many scalings, shears, and reflections about
the diagonal.

(f) Draw the image of the unit square under each of the following linear maps, and decom-
pose each of the linear maps into a sequence of scalings, shears, and reflections about
the diagonal (row-reduce the matrix, keeping track of the steps!):

(i) (2 0
1 6

) (ii) (0 −1
1 0

) .

Solution.

(a) For this part, we simply carry out the five matrix multiplications:

(i) (0 1
1 0

)(a b
c d

) = (0 + c 0 + d
a + 0 b + 0

) = (c d
a b

),

(ii) (λ 0
0 1

)(a b
c d

) = (λa + 0 λb + 0
0 + c 0 + d ) = (λa λb

c d
),

(iii) (1 0
0 λ

)(a b
c d

) = ( a + 0 b + 0
0 + λc 0 + λd) = ( a b

λ c λd
),

(iv) (1 1
0 1

)(a b
c d

) = (a + c b + d
0 + c 0 + d) = (a + c b + d

c d
),

(v) (1 0
1 1

)(a b
c d

) = (a + 0 b + 0
a + c b + d) = ( a b

a + b c + d).

(b) Since every operation of type (Op. 1), (Op. 2), (Op. 3) may be realized by a left-
multiplication by one of the matrices E1, E2(λ,1), E2(λ,2), E3(1) and E3(2), and
every 2×2 matrix with nonzero determinant may be brought to the identity matrix by
a finite number of operations of this type, we conclude that there exists a sequence of
matrices as claimed.

(c) More matrix multiplication! It is enough to check that E−1
i ⋅Ei = I, where Ei is a type

of elementary matrix, E−1
i is its claimed inverse, and I is the 2×2 identity matrix (note:

it is then automatically true that also Ei ⋅E−1
i = I, a proposition from linear algebra of
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finite-dimensional vector spaces).

(0 1
1 0

)(0 1
1 0

) = (0 + 1 0 + 0
0 + 0 1 + 0

) = (1 0
0 1

) ,

(
1
λ 0
0 1

)(λ 0
0 1

) = (
λ
λ 0 + 0

0 + 0 0 + 1
) = (1 0

0 1
) ,

(1 0
0 1

λ

)(1 0
0 λ

) = (1 + 0 0 + 0
0 + 0 0 + λ

λ

) = (1 0
0 1

) ,

(1 −1
0 1

)(1 1
0 1

) = (1 + 0 1 − 1
0 + 0 0 + 1

) = (1 0
0 1

) ,

( 1 0
−1 1

)(1 0
1 1

) = ( 1 + 0 0 + 0
−1 + 1 0 + 1

) = (1 0
0 1

) .

(d) The linear transformation (0 1
1 0

) sends the unit vectors (1
0
) and (0

1
) to

(0 1
1 0

)(1
0
) = (0

1
) and (0 1

1 0
)(0

1
) = (1

0
)

An arbitrary point (x, y) gets sent to (y, x). This is a reflection about the diagonal.

E−1
1

The linear transformation (
1
λ 0
0 1

) sends the unit vectors (1
0
) and (0

1
) to

(
1
λ 0
0 1

)(1
0
) = (1/λ

0
) and (

1
λ 0
0 1

)(0
1
) = (0

1
)

This is a scaling by 1/λ along the x-coordinate.

A few examples — for λ = 2, we have a shrinking along the x-coordinate by a factor of
2 (in other words, a scaling by a factor of 1/2):
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E−1
2 (2,1)

For λ = 1/3, we have an expansion along the x-coordinate by a factor of 3:

E−1
2 (1

3 ,1)

For the interesting case of λ = −1, we have a reflection about the y-axis (i.e. a scaling
along the x-coordinate by a factor of −1):

E−1
2 (−1,1)

Similarly, E−1
2 (λ,2) is a scaling along the y-coordinate by 1/λ. For example, for λ = −1

2 ,
the transformation looks like a reflection about the x-axis and a stretch by a factor of
2:

E−1
2 (−1

2 ,2)
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The linear transformation (1 −1
0 1

) sends the unit vectors (1
0
) and (0

1
) to

(1 −1
0 1

)(1
0
) = (1

0
) and (1 −1

0 1
)(0

1
) = (−1

1
)

This is a shear parallel to the x-axis and going to the left:

E−1
3 (1)

Similarly, ( 1 0
−1 1

) sends the unit vectors (1
0
) and (0

1
) to

( 1 0
−1 1

)(1
0
) = ( 1

−1) and ( 1 0
−1 1

)(0
1
) = (0

1
)

This is a shear parallel to the y-axis and going down:

E−1
3 (1)

(e) From part (b), we have

MrMr−1⋯M2M1A = (1 0
0 1

)

Multiplying on both sides by

(MrMr−1⋯M2M1)−1 =M−1
1 M−1

2 ⋯M−1
r−1M

−1
r ,
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we have

A = (MrMr−1⋯M2M1)−1MrMr−1⋯M2M1A = (MrMr−1⋯M2M1)−1 (
1 0
0 1

) =M−1
1 M−1

2 ⋯M−1
r−1M

−1
r .

From part (d), each M−1
i is a scaling, shear, or reflection about the diagonal, and the

claim follows.

(f) For both parts, we begin by row-reducing the matrix using (Op. 1), (Op. 2) and (Op. 3),
keeping track of the steps. For part (i),

(2 0
1 6

)
E2(

1
2
,1)

ÐÐÐÐ→ (1 0
1 6

) E2(−1,2)ÐÐÐÐ→ ( 1 0
−1 −6)

E3(2)ÐÐÐ→ (1 0
0 −6)

E2(−
1
6
,2)

ÐÐÐÐÐ→ (1 0
0 1

) .

Therefore,

E2(−
1

6
,2)E3(2)E2(−1,2)E2(

1

2
,1)(2 0

1 6
) = (1 0

0 1
)

and so

(2 0
1 6

) = E−1
2 (1

2
,1)E−1

2 (−1,2)E−1
3 (2)E−1

2 (−1

6
,2).

The unit vectors (1
0
) and (0

1
) are sent to

(2 0
1 6

)(1
0
) = (2

1
) and (2 0

1 6
)(0

1
) = (0

6
) .
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A sketch of the linear transformation is:

(2 0
1 6

)

On the other hand, let’s keep track what happens under the decomposition

(2 0
1 6

) = E−1
2 (1

2
,1)E−1

2 (−1,2)E−1
3 (2)E−1

2 (−1

6
,2).
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The linear transformation is applied right-to-left, so we begin with E−1
2 (−1

6 ,2), which
is a scaling by −6 along the y-axis:

E−1
2 (−1

6 ,2)
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This is followed by E−1
3 (2), which is a shear down:

E−1
3 (2)
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Then, E−1
2 (−1,2) is a reflection about the x-axis (or scaling by -1 along y-coordinate):

E−1
2 (−1,2)
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Finally, E−1
2 (1

2 ,1) is a stretch by 2 along the x-axis:

E−1
2 (1

2 ,1)

For part (ii), the matrix (0 −1
1 0

) row-reduces as:

(0 −1
1 0

) E1Ð→ (1 0
0 −1)

E2(−1,2)ÐÐÐÐ→ (1 0
0 1

) .

Therefore, we get the decomposition

(0 −1
1 0

) = E−1
1 E−1

2 (−1,2).

You may recognize from class that this is the matrix of a counterclockwise rotation by
π/2 radians. The transformation looks like:
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(0 −1
1 0

)

The decomposition into inverses of elementary matrices decomposes the rotation into
two reflections.

First, E−1
2 (−1,2) is a reflection about the x-axis:

E−1
2 (−1,2)

Then, E−1
1 is a reflection about the diagonal:

E−1
1

It is quite interesting that a rotation can be realized by two reflections.
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3 (Double Integral Over a Parallelogram, Once Again). Recall the parallelogram R with
vertices (1,1), (3,3), (5,2), (7,4) from Problem Set 5:

y = x y = x − 3

y = x+3
4

y = x+9
4

R

The form of the equations of the boundary lines suggests that

u(x, y) = y − x, v(x, y) = y − x
4

is a good change of variables for this problem.
This describes the inverse map T −1 ∶ R2

(x,y)
→ R2

(u,v)
.

(a) What is the region R∗ = T −1(R) in R2
(u,v)

?

(b) Solve for x = x(u, v) and y = y(u, v) as functions of u and v. (This amounts to finding
the inverse of T −1, or, in other words, finding T .)

(c) Compute the Jacobian
∂(x, y)
∂(u, v) .

(d) Compute ∬R(y − x)2016 dA by applying the change of variables theorem.

Solution.

(a) The region R∗ is the rectangle [−3, 0] × [3/4, 9/4].
There are many ways to justify this. For one, we have shown in lecture that linear maps
take parallelograms to parallelograms, so the region R∗ is a parallelogram, determined
by its four vertices. The vertices of R go to

(1,1)↦ (1 − 1, 1 − 1

4
) = (0,

3

4
) ,

(3,3)↦ (3 − 3, 3 − 3

4
) = (0,

9

4
) ,

(5,2)↦ (2 − 5, 2 − 5

4
) = (−3, 3

4
) ,

(1,1)↦ (4 − 7, 4 − 7

4
) = (−3, 9

4
) .

These are the vertices of the rectangle [−3, 0] × [3/4, 9/4].
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(b) A clean way to do this is to write down the matrix of T −1 and find its inverse.

The matrix of T −1 is

(−1 1
−1

4 1
) .

The inverse of a matrix (a b
c d

) with nonzero determinant is 1
det (

d −b
−c a

). Therefore,

the matrix of T is
1

−1 + 1
4

(1 −1
1
4 −1

) = −4

3
(1 −1
1
4 −1

) .

Writing out the variables, we have found that

x(u, v) = −4

3
(u − v) ,

y(u, v) = −4

3
(u

4
− v) .

For another possible solution, we could have played around with the equations. We
have

v − u = (y − x
4
) − (y − x) = 3

4
x,

so

x = −4

3
(u − v);

and
4v − u = (4y − x) − (y − x) = 3y,

so

y = −4

3
(u

4
− v).

(For yet another possible approach, we could have converted the system of linear
equations into matrix form and solved.)

(c) By Problem 1, the Jacobian of T is T itself.

∂(x, y)
∂(u, v) = T = −4

3
(1 −1
1
4 −1

) .

The determinant of T (and therefore the determinant of the Jacobian) is equal to −4
3 .
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(d) By the change of variables theorem for double integrals (and Fubini’s theorem),

∬
R
(y − x)2016 dA =∬

R∗
u2016 ∣det

∂(x, y)
∂(u, v)∣ dA

= ∫
0

−3
∫

9/4

3/4
u2016

4

3
dv du

= 4

3 ∫
0

−3
u2016 (9

4
− 3

4
) du

= 4

3

6

4
[u

2017

2017
]
u=0

u=−3

= 2 ⋅ 32017

2017
.

Remark. This example illustrates why it is necessary to take the absolute value of
det ∂(x,y)∂(u,v) in the change of variables theorem — the transformation may be orientation-

reversing (and so have a negative determinant), as is the case in this example!
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