
MTHE 227 Problem Set 6 Solutions

Reminder. In lecture, we have defined the polar coordinate direction vector fields er and
eθ. These may be expressed in terms of the Cartesian direction vector fields (the latter also
known as Cartesian direction vectors, the fields being constant) as 1

er(x, y) = cos θex + sin θey =
xex + yey
√
x2 + y2

,

eθ(x, y) = − sin θex + cos θey =
−yex + xey
√
x2 + y2

.

Going the other way, we have

ex(r, θ) = cos θ er(r, θ) − sin θ eθ(r, θ),

ey(r, θ) = sin θ er(r, θ) + cos θ eθ(r, θ).

Intuitively, er and eθ are steps of unit length in the directions of increasing r and θ, respec-
tively.

1 (Velocity and Acceleration in Polar Coordinates). We have seen that for a path parametrized
in polar coordinates by t ↦ (r(t), θ(t)), t in [0,2π], the velocity and acceleration may be
computed as

v(t) =
dr

dt
er(r(t), θ(t)) + r

dθ

dt
eθ(r(t), θ(t)), and

a(t) = (
d2r

dt2
− r (

dθ

dt
)

2

) er(r(t), θ(t)) + (r
d2θ

dt2
+ 2

dr

dt

dθ

dt
)eθ(r(t), θ(t)).

To gain some understanding of the meaning of the various terms in the expression for the
acceleration, for each of the following paths: sketch the path, compute the velocity and
acceleration in polar coordinates, and sketch the velocity and acceleration vectors at a few
points.

(a) (Accelerating Linear Motion) The path t↦ (t2, π/4), t > 0.

(b) (Uniform Circular Motion) The path t↦ (R, 2016 t), t ∈ R. For this path, check that

∥a(t)∥ =
∥v(t)∥2

R
for all t.

(This example is meant to shed some light on the −r(dθ/dt)2 term.)

(c) (Accelerating Circular Motion) The path t↦ (R, 1008t2), t ∈ R.

1The second equalities hold as long as (x, y) ≠ (0,0).
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(d) (Archimedean Spiral) The path t↦ (t, t), t > 0.

(One can think of this example as the path followed by a ball rolling radially at unit
speed on a platform rotating with unit angular speed, from the reference frame of
someone not standing on the platform. It is one of the simplest examples in which the
2drdt

dθ
dt term is nonzero.)

(e) (A Cardioid) The path t ↦ (1 + cos(t), t) = (r(t), θ(t)), t ∈ [0,2π]. This is one
possible parametrizations of the cardioid from Problem Set 5. Sketch the velocity and
acceleration at t = 0, t = π/4, t = π/2 and t = π.

Solution.

(a) The path accelerates along a ray that makes an angle of π/4 with the x-axis. Positions
at times t = 0, t = 1 and t = 2 are:

r(0) = (0, π/4), r(1) = (1, π/4), r(2) = (4, π/4).

π/4
r(0)

r(1)

r(2)

We compute
dr

dt
= 2t,

dθ

dt
= 0,

d2r

dt2
= 2,

d2θ

dt2
= 0.

At each point along the path, the direction vectors look like

er(t2, π/4)eθ(t2, π/4)

The velocity is

v(t) =
dr

dt
er(t

2, π/4) + r
dθ

dt
eθ(t

2, π/4) = 2ter(t
2, π/4).

2



At times t = 0, t = 1, t = 2, the velocities are

v(0) = 0, v(1) = 2er(1, π/4), v(2) = 4er(4, π/4).

v(0)

v(1)

v(2)

The acceleraton is

a(t) = (
d2r

dt2
− r (

dθ

dt
)

2

) er(t
2, π/4) + (r

d2θ

dt2
+ 2

dr

dt

dθ

dt
)eθ(t

2, π/4) = 2er(t
2, π/4).

a(0)

a(2)

(a(1) was skipped to avoid overlaps.)

(b) The path moves along a circle with constant speed. The position vectors at times

t = 0, t = π/4
2016 , t =

π/2
2016 , t =

3π/4
2016 and t = π

2016 are
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r(0) = (R, 0), r(
π/4

2016
) = (R, π/4), r(

π/2

2016
) = (R, π/2),

r(
3π/4

2016
) = (R, 3π/4), r(

π

2016
) = (R, π).

r(0)

r( π/4
2016)

r( π/2
2016)

r(3π/4
2016)

r( π
2016)

The direction vectors at these positions look like

We compute
dr

dt
= 0,

dθ

dt
= 2016,

d2r

dt2
= 0,

d2θ

dt2
= 0.

The velocity is

v(t) =
dr

dt
er(r(t), θ(t)) + r

dθ

dt
eθ(r(t), θ(t)) = 2016Reθ(R,2016t).

Not to scale (but with correct relative lengths), the velocities at the times above look
like
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v(0)

v(
π/4
2016)v(

π/2
2016)

v(
3π/4
2016)

v( π
2016)

The acceleraton is

a(t) = (
d2r

dt2
− r (

dθ

dt
)

2

) er(r(t), θ(t))+(r
d2θ

dt2
+ 2

dr

dt

dθ

dt
)eθ(r(t), θ(t)) = −20162R er(R, 2016t).

Again, the lengths of the following are not to scale (but all have equal lengths, so have
the right relative scale):

a(0)

a(
π/4
2016)

a(
π/2
2016)

a(
3π/4
2016)

a( π
2016)

For this path, we have

∥a(t)∥2 = (−20162Rer(r(t), θ(t)) + 0eθ(r(t), θ(t))) ⋅ (−20162Rer(r(t), θ(t)) + 0eθ(r(t), θ(t)))

= 20164R2,

so that
∥a(t)∥ = 20162R

(it is also possible to see this more geometrically — a(t) always points opposite to a
direction vector, with magnitude 20162R.)

On the other hand, for this path

∥v(t)∥2 = (0er(r(t), θ(t)) + 2016Reθ(r(t), θ(t))) ⋅ (0er(r(t), θ(t)) + 2016Reθ(r(t), θ(t)))

= 20162R2
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So we see that

∥a(t)∥ =
∥v(t)∥2

R
.

(c) The path again goes along a circle of radius R, but this time with accelerating speed.

At times t = 0,
√

π/4
1008 ,

√
π/2
1008 ,

√
π

1008 , the positions are

r(0) = (R,0),

r(

√
π/4

1008
) = (R, π/4),

r(

√
π/2

1008
) = (R, π/2),

r(

√
π

1008
) = (R, π)

r(0)

r(
√

π/4
1008)

r(
√

π/2
1008)

r(
√

π
1008)

The direction vectors at these positions look like
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We compute
dr

dt
= 0,

dθ

dt
= 2016t,

d2r

dt2
= 0,

d2θ

dt2
= 2016.

The velocity is

v(t) =
dr

dt
er(r(t), θ(t)) + r

dθ

dt
eθ(r(t), θ(t)) = 2016tReθ(R,1008t2).

Not to scale, the velocities at the times above look like

v(0)

v(
√

π/4
1008)

v(
√

π/2
1008)

v( π
2016)

The vectors are increasing in length, but are always tangent to the circle.

The acceleration is

a(t) = (
d2r

dt2
− r (

dθ

dt
)

2

) er(r(t), θ(t)) + (r
d2θ

dt2
+ 2

dr

dt

dθ

dt
)eθ(r(t), θ(t))

= −20162t2R er(R, 1008t2) + 2016R eθ(R, 1008t2).

The acceleration now has a nonzero eθ term in its expansion, as well as dependence on
t in the coefficient of er.
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a(0)

a(
√

π/4
1008)

a(
√

π/2
1008)

a(
√

π
1008)

(d) The path looks like a spiral. Let’s look at the velocity and acceleration at times
t = π/2, t = π, t = 7π/4, t = 4π.

r(π/2)

r(π)

r(7π/4)

r(4π)

The direction vector fields look as follows at these points (scaled up by a factor of 2 to
make them easier to see):
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We compute
dr

dt
= 1,

dθ

dt
= 1,

d2r

dt2
= 0,

d2θ

dt2
= 0.

The velocity is

v(t) =
dr

dt
er(t, t) + r

dθ

dt
eθ(t, t) = er(t, t) + teθ(t, t).
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v(π/2)

v(π)

v(7π/4)

v(4π)

The acceleration is

a(t) = (
d2r

dt2
− r (

dθ

dt
)

2

) er(r(t), θ(t)) + (r
d2θ

dt2
+ 2

dr

dt

dθ

dt
)eθ(r(t), θ(t))

= −ter(t, t) + 2eθ(t, t).
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a(π/2)

a(π)

a(7π/4)

a(4π)

(e) This is the heart-shaped path from Problem Set 5.

r(0)

r(π/4)
r(π/2)

r(π)

We compute
dr

dt
= − sin(t),

dθ

dt
= 1,

d2r

dt2
= − cos(t),

d2θ

dt2
= 0.
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The velocity is

v(t) =
dr

dt
er(t, t) + r

dθ

dt
eθ(t, t) = − sin(t)er(1 + cos(t), t) + (1 + cos(t))eθ(1 + cos(t), t).

At our points,

v(0) = 2eθ(r(0)),

v(π/4) = −
1

√
2
er(r(π/4)) +

√
2 + 1
√

2
eθ(r(π/4)),

v(π/2) = −1er(r(π/2)) + 1eθ(r(π/2)),

v(π) = 0.

v(0)v(π/4)

v(π/2)
v(π)

The acceleration is

a(t) = (
d2r

dt2
− r (

dθ

dt
)

2

) er(r(t), θ(t)) + (r
d2θ

dt2
+ 2

dr

dt

dθ

dt
)eθ(r(t), θ(t))

= (− cos(t) − (1 + cos(t))) er(1 + cos(t), t) + −2 sin(t)eθ(1 + cos(t), t)

= −(1 + 2 cos(t)) er(1 + cos(t), t) + −2 sin(t)eθ(1 + cos(t), t).

At our points,

a(0) = −3er(r(0)),

a(π/4) = (−1 −
√

2)er(r(π/4)) −
√

2eθ(r(π/4)),

a(π/2) = −1er(r(π/2)) − 2eθ(r(π/2)),

a(π) = 1er(r(π)).

Scaled down by a factor of 3, the acceleration vectors look like:
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a(0)

a(π/4)
a(π/2)

a(π)

13


