
MTHE 227 Problem Set 4 Solutions

1 (Finding Potentials). For each of the following vector fields F, find a real-valued function
f such that F = ∇f (problems from Calculus by J. Stewart):

(a) F(x, y) = ( ln y + y
x , lnx + x

y ) with x > 0, y > 0.

(b) F(x, y) = ( (1 + xy)exy, x2exy ) with (x, y) ∈ R2.

(c) F(x, y, z) = ( y2z + 2xz2, 2xyz, xy2 + 2x2z ) with (x, y, z) ∈ R3.

Solution.

(a) Using ‘Method 3’ from lecture: take (1,1) as the base point. Then, for any (x1, y1) in
the region {(x, y) ∶ x > 0, y > 0}, choose the path C = C1 + C2 from (1,1) to (x1, y1),
where C1 is the straight line segment from (1,1) to (x1,1) and C2 is the straight line
segment from (x1,1) to (x1, y1).

(1,1)

(x1, y1)

C1
C2

Then, define the potential at (x1, y1) by

f(x1, y1) = ∫
C

F ⋅ dr,

Parametrize C1 and C2 by

C1 ∶ t↦ (t,1), t from 1 to x1,

C2 ∶ t↦ (x1, t), t from 1 to y1.

For C1:

The velocity vector is v(t) = (1,0) and so

F(r(t)) ⋅ v(t) = (ln 1 +
1

t
, ln t +

t

1
) ⋅ (1,0) = ln 1 +

1

t
=

1

t
.

We have

∫
C1

F ⋅ dr = ∫
x1

1

dt

t
= [ln t]

t=x1
t=1 = lnx1.

For C2:
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The velocity vector is v(t) = (0,1) and so

F(r(t)) ⋅ v(t) = (ln t +
t

x1
, lnx1 +

x1
t
) ⋅ (0,1) = lnx1 +

x1
t
.

We have

∫
C2

F ⋅ dr = ∫
y1

1
lnx1 +

x1
t
dt = [t lnx1 + x1 ln t]

t=y1
t=1 = y1 lnx1 + x1 ln y1 − lnx1.

Finally,

∫
C

F ⋅ dr = ∫
C1

F ⋅ dr + ∫
C2

F ⋅ dr = lnx1 + y1 lnx1 + x1 ln y1 − lnx1 = y1 lnx1 + x1 ln y1

so that (we are finished integrating, and so drop the subscripts on x1 and y1)

f(x, y) = y lnx + x ln y

is a possible potential, as one can readily check.

We could have chosen different paths to (x1, y1).

Using ‘Method 2’: Taking the antiderivative of ln y + y
x with respect to x, we get

f(x, y) = x ln y + y lnx + g(y) is a potential, for some undetermined function g(y).
Taking the partial derivative of f with respect to y, we find that x

y + lnx + g′(y), so

that g′(y) = 0, and the general potential is given by

x ln y + y lnx +C.

We could have also started by taking the antiderivative of lnx + x
y with respect to y.

The computation would be similar.

(b) Using ‘Method 3’: take (0,0) as the base point, and take the path C = C1 + C2 to
(x1, y1) consisting of

C1 ∶ t↦ (t,0), t from 0 to x1,

C2 ∶ t↦ (x1, t), t from 0 to y1.

For C1:

The velocity vector is v(t) = (1,0) and so

F(r(t)) ⋅ v(t) = ( (1 + t ⋅ 0)et⋅0, t2et⋅0 ) ⋅ (1,0) = (1 + 0t)e0 = 1.

We have

∫
C1

F ⋅ dr = ∫
x1

0
dt = x1.

For C2:

The velocity vector is v(t) = (0,1) and so

F(r(t)) ⋅ v(t) = ( (1 + x1t)e
x1t, x21e

x1t ) ⋅ (0,1) = x21e
x1t.
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We have

∫
C1

F ⋅ dr = ∫
y1

0
x21e

x1t dt = x1e
x1y1 − x1.

So that

∫
C

F ⋅ dr = x1 + (x1e
x1y1 − x1) = x1e

x1y1 .

One possible potential is
f(x, y) = xexy.

Using ‘Method 2’: If we begin by taking the indefinite integral with respect to y (which
seems simpler), we get

f(x, y) = xexy + g(x),

where g is an undetermined function of x. Then, taking the partial with respect to
x, we need ∂f/∂x = exy + xyexy + g′(x) = (1 + xy)exy + g′(x). Comparing with the
first component of the vector field F, we see that g′(x) = 0, so that g(x) = C and an
arbitrary potential is given by

f(x, y) = xexy +C.

If we tried to take the indefinite integral with respect to x in the beginning, we would
have ended up with a term of the form xyexy, that needs to be integrated by parts.

(c) Using ‘Method 3’: take (0,0,0) as the reference point, and take C to be the line segment
connecting (0,0,0) and (x1, y1, z1), parametrized by t↦ ( x1t, y1t, z1t ), t ∈ [0,1]. The
velocity vector of the parametrization is v(t) = (x1, y1, z1), independent of t. Therefore,

F(r(t)) ⋅ v(t) = ( y21z1t
3 + 2x1z

2
1t

3, 2x1y1z1t
3, x1y

2
1t

3 + 2x21z1t
3 ) ⋅ (x1, y1, z1)

= ( x1y
2
1z1 + 2x21z

2
1 + 2x1y

2
1z1 + x1y

2
1z1 + 2x21z

2
1 ) t3

= ( 4x21z
2
1 + 4x1y

2
1z1 ) t3

= ( x21z
2
1 + x1y

2
1z1 )4t3.

Computing the work, we get

∫
C

F ⋅ dr = ∫
1

0
( x21z

2
1 + x1y

2
1z1 )4t3 dt = ( x21z

2
1 + x1y

2
1z1 ) [t4]

t=1
t=0 .

So that one possible potential is

f(x, y, z) = x2z2 + xy2z.

This was comparatively short! We have taken advantage of the fact that the field is
given by polynomials that are all degree 3.

Of course, we could have taken the usual C = C1 + C2 + C3 path with parts that are
parallel to the x-, y- and z-axes (as seen in class), which would have taken more work.
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Using ‘Method 2’: Since the y-component of the vector field has only one term, let’s
begin by taking its antiderivative. We have

∂f

∂y
= 2xyz Ô⇒ f(x, y, z) = xy2z + g(x, z).

Taking the partial derivative of the result with respect to x, we find

∂f

∂x
= y2z +

∂g

∂x

which should equal to F1(x, y, z) = y2z + 2xz2. We conclude that

∂g

∂x
= 2xz2 Ô⇒ g(x, z) = x2z2 + h(z).

Plugging this back into the expression for f , we find

f(x, y, z) = xy2z + x2z2 + h(z).

Taking the partial with respect to z,

∂f

∂z
= xy2 + 2x2z + h′(z).

This should be equal to F3(x, y, z) = xy2 + 2x2z, which implies that h′(z) = 0. In
conclusion, a general potential is given by

f(x, y, z) = xy2z + x2z2 +C.

2 (Geometric Meaning of Flux). Let C be the unit circle in R2 with normal pointing away
from the origin (note: unlike Problem Set 3, C is the entire circle, not just the upper
semicircle). Define the following vector fields:

F(x, y) ∶= (x, y), G(x, y) ∶= (
x − y
√

2
,
x + y
√

2
) , H(x, y) ∶= (−y, x) for all (x, y) ∈ R2

(As a reminder, these three vector fields can be obtained by rotating each vector of the field
F(x, y) = (x, y) in place counterclockwise by 0, π/4 and π/2 radians, respectively.)

Compute the flux ∫C F ⋅ n̂ds, ∫C G ⋅ n̂ds, and ∫C H ⋅ n̂ds of each of the three vector fields
across C. Which of the three is largest? Which is smallest? Explain briefly. (Be careful to
orient the normals correctly.)

Optional Problem. The three vector fields above are members of the family

Fθ(x, y) = (x cos θ − y sin θ, x sin θ + y cos θ),

with 0 ≤ θ < 2π (F = F0, G = Fπ/4, H = Fπ/2). The vector field Fθ can be obtained by
rotating each vector of the field F(x, y) = (x, y) counterclockwise by θ radians (in place).
Plot the flux of Fθ across C, as a function of θ.
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Solution. Parametrize the circle C by t ↦ (cos t, sin t), t ∈ [0,2π]. The velocity of this
parametrization is v(t) = (− sin t, cos t), hence the outward normal is n+(t) = (y′(t),−x′(t)) =
(cos t, sin t) (because the parametrization of C is going counterclockwise, we need to take
n+ to get an outward normal). Notice that n+(t) = r(t) for each t, as we might have seen
from geometry.

We have

F(r(t)) ⋅ n+(t) = (cos t, sin t) ⋅ (cos t, sin t) = cos2 t + sin2 t = 1,

G(r(t)) ⋅ n+(t) = (
cos t − sin t

√
2

,
cos t + sin t

√
2

) ⋅ (cos t, sin t)

=
1

√
2
(cos2 t − sin t cos t + cos t sin t + sin2 t) =

1
√

2
,

H(r(t)) ⋅ n+(t) = (− sin t, cos t) ⋅ (cos t, sin t) = − sin t cos t + cos t sin t = 0.

Therefore,

∫
C

F ⋅ n̂ds = ∫
2π

0
dt = 2π,

∫
C

G ⋅ n̂ds = ∫
2π

0

1
√

2
dt =

2π
√

2
=
√

2π,

∫
C

H ⋅ n̂ds = ∫
2π

0
0dt = 0,

Geometrically, each of the three vector fields makes a constant angle with the outward
normal (they are 0, π/4 and π/2 radians for F, G, H respectively). Since each vector of the
three fields has length one on the unit circle C, it follows that the flux of the fields across C
can be computed by multiplying the ‘local flow’ 1, 1/

√
2, 0 of F, G, H by the arclength 2π

of the unit circle C.

Solution of the Optional Problem. Using the same parametrization, we find

Fθ(r(t)) ⋅ n+(t) = (cos t cos θ − sin t sin θ, cos t sin θ + sin t cos θ) ⋅ (cos t, sin t)

= cos2 t cos θ − cos t sin t sin θ + cos t sin t sin θ + sin2 t cos θ

= (cos2 t + sin2 t) cos θ = cos θ.

Therefore, the flux ∫C Fθ ⋅ n̂ds is equal to 2π cos θ. The geometric explanation is similar to
that in the previous paragraph. Notice that the flux becomes negative when π/2 < θ < 3π/2,
when the flow is going against the normal.

θ2π

2π

n+(r(π/4))
Fθ(r(π/4))

θ
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3 (More Practice with Flux). Let C = C1+C2, where C1 is the graph of the function x↦ 4−x2

with domain [−2,2], and C2 is the graph of the function x ↦ x2 − 4 with domain [−2,2].
Compute the flux out of the region enclosed by C (this means that the normals are pointing
outward) of the vector field F(x, y) = (x + y, y − x).

C1

C2

Solution. For C1:
Parametrize the curve C1 by t↦ (t,4−t2), t ∈ [−2,2]. The velocity of the parametrization

is v(t) = (1,−2t), and the outward normal is n−(t) = (−y′(x), x′(t)) = (2t,1). Therefore,

F(r(t)) ⋅ n−(t) = ( t + 4 − t2, 4 − t2 − t ) ⋅ (2t,1)

= 2t2 + 8t − 2t3 + 4 − t2 − t

= −2t3 + t2 + 7t + 4,

so that

∫
C1

F ⋅ n̂ds = ∫
2

−2
−2t3 + t2 + 7t + 4dt

= [−
t4

2
+
t3

3
+

7t2

2
+ 4t]

t=2

t=−2

=
64

3
.

Across C2, we see that the flux must be equal to that across C1 by symmetry (the set-up is
the same if we rotate everything by 180 degrees), so that

∫
C

F ⋅ n̂ds = ∫
C1

F ⋅ n̂ds + ∫
C2

F ⋅ n̂ds =
64

3
+

64

3
=

128

3
.

For the symmetry-argument skeptic, we can check that indeed the flux across C2 is what
we claim:

Parametrize the curve C2 by t↦ (t, t2−4), t ∈ [−2,2]. The velocity of the parametrization
is v(t) = (1,2t), and the outward normal is n+(t) = (y′(t),−x′(t)) = (2t,−1). Then,

F(r(t)) ⋅ n+(t) = ( t + t2 − 4, t2 − 4 − t ) ⋅ (2t,−1)

= 2t2 + 2t3 − 8t − t2 + 4 + t

= 2t3 + t2 − 7t + 4
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and so

∫
C2

F ⋅ n̂ds = ∫
2

−2
2t3 + t2 − 7t + 4dt

= [
t4

2
+
t3

3
−

7t2

2
+ 4t]

t=2

t=−2

=
64

3
.

4. Let C be a simple oriented curve (reminder: this means that C has no self-intersections
(except for the possibility that the two endpoints of C may meet), and that one of the
two possible orientations of C has been chosen). Denote by −C the simple oriented curve
obtained by reversing the orientation of C.

If t ↦ r(t), t ∈ [a, b] is a parametrization of C, then one possible parametrization of −C
is t↦ r(b + a − t), t ∈ [a, b].

(a) Let L be the line segment in R2 going from the origin (0,0) to the point (1,2).
Parametrize L, denoting your parametrization by t ↦ r(t), t ∈ [a, b]. Then, convince
yourself that the above prescription produces a parametrization of −L: check that
t↦ r(b+a− t), t ∈ [a, b] goes from (1,2) to (0,0), and compare its velocity vector with
that of your parametrization of L.

(b) Let F be a vector field. Let C be a simple oriented curve, parametrized as t ↦ r(t),
with t ∈ [a, b]. Denote the reversed-orientation parametrization above by t ↦ s(t) ∶=
r(b + a − t), with t ∈ [a, b]. Show that

∫

b

a
F(s(t)) ⋅ s′(t)dt = −∫

b

a
F(r(t)) ⋅ r′(t)dt.

(Suggestion: Expand out in coordinates and make a u-substitution.)

In fact, it is true in general that ∫−C F ⋅ dr = − ∫C F ⋅ dr (and the proof is similar to the
computation above, but involves a discussion of orientation-reversing reparametrizations,
which we will omit).

As discussed in lecture, the work integral over a piecewise curve D = D1 +D2 + ⋯ +Dn,
where each Di is simple and oriented, is defined as

∫
D

F ⋅ dr ∶= ∫
D1

F ⋅ dr + ∫
D2

F ⋅ dr +⋯ + ∫
Dn

F ⋅ dr.

For simplicity of notation, write C + (−C) as C −C.

(c) Conclude that ∫C−C F ⋅ dr = 0.

***

Recall the following definition from lecture:
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Definition. A vector field F is called conservative if, for any pair of points Q, P , and any
pair of piecewise curves C, C ′ from Q to P , we have ∫C F ⋅ dr = ∫C′ F ⋅ dr.

Negating the definition, a vector field F is not conservative if there exists some pair of
points Q, P , and some pair of piecewise curves C, C ′ from Q to P with ∫C F ⋅dr ≠ ∫C′ F ⋅dr.

(d) Show the stronger statement: if a vector field is not conservative, then for all pairs
of points Q, P , there exists some pair of piecewise curves C, C ′ from Q to P with

∫C F ⋅ dr ≠ ∫C′ F ⋅ dr. (Suggestion: Extend by two line segments the two piecewise curves

guaranteed by the above negation of the definition of conservative.)

Solution.

(a) Lmay be parametrized as t↦ (t,2t) with t ∈ [0,1]. We have a = 0, b = 1, so b+a−t = 1−t.
Let s(t) = r(b + a − t) = r(1 − t) = (1 − t,2 − 2t).

At t = 0, s(0) = (1 − 0,2 − 0) = (1,2). At t = 1, s(1) = (1 − 1,2 − 2) = (0,0). We have

s′(t) = (−1,−2) = −(1,2) = −r′(t),

so the velocity vectors of the two paths are opposite at every point.

(b) Write r(t) out in (x, y) coordinates as r(t) = (x(t), y(t)). By definition of s, we have
s(t) = r(b + a − t) = (x(b + a − t), y(b + a − t)).

Since (by the chain rule)

d

dt
(x(b + a − t)) = x′(b + a − t) ⋅

d

dt
(b + a − t) = x′(b + a − t) ⋅ (−1) = −x′(b + a − t),

and similarly d
dt (y(b + a − t)) = −y

′(b + a − t), we have

s′(t) = (
d

dt
(x(b + a − t)) ,

d

dt
(y(b + a − t)) )

= − (x′(b + a − t), y′(b + a − t))
= −r′(b + a − t).

Therefore,

∫

b

a
F(s(t)) ⋅ s′(t)dt = ∫

b

a
F(r(b + a − t)) ⋅ (−r′(b + a − t))dt

Now, make the u-substitution u = b + a − t, du = −dt. Since t goes from a to b, u goes
from b + a − a = b to b + a − b = a, and we get

∫

b

a
F(s(t)) ⋅ s′(t) = ∫

a

b
F(r(u)) ⋅ r′(u)du = −∫

b

a
F(r(u)) ⋅ r′(u)du,

which (up to renaming u by t on the right-hand side) is what we were asked to prove.

(c) ∫C−C F ⋅ dr = ∫C F ⋅ dr + ∫−C F ⋅ dr = ∫C F ⋅ dr − ∫C F ⋅ dr = 0.
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(d) Let Q′ and P ′ be a pair of points, and D, D′ pair of paths from Q′ to P ′, such that

∫D F ⋅ dr ≠ ∫D′ F ⋅ dr. Such points and paths exist, because F is assumed to be not
conservative.

Now, let Q and P be an arbitrary pair of points. Let E be a path from Q to Q′, and
let E′ be a path from P ′ to P (for example, straight line segments joining these pairs
of points would do). Then, C ∶= E +D + E′ and C ′ ∶= E +D′ + E′ is a pair of paths
from Q to P , and ∫C F ⋅ dr ≠ ∫C′ F ⋅ dr.

Indeed, by definition,

∫
C

F ⋅ dr = ∫
E

F ⋅ dr + ∫
D

F ⋅ dr + ∫
E′

F ⋅ dr, and

∫
C′

F ⋅ dr = ∫
E

F ⋅ dr + ∫
D′

F ⋅ dr + ∫
E′

F ⋅ dr.

Since ∫D F ⋅ dr ≠ ∫D′ F ⋅ dr by the choice of D and D′, and the other two terms are
shared between ∫C F ⋅ dr and ∫C′ F ⋅ dr, we see that ∫C F ⋅ dr ≠ ∫C′ F ⋅ dr.
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