
MTHE 227 Problem Set 1 Solutions

1 (Secant and Tangent). This problem describes an interpretation of the trigonometric func-
tions sec and tan in terms of the geometry of the unit circle.

Let C be the unit circle in R2 centered at the origin. Parametrize an arc of C by

{ x(θ) = cos θ
y(θ) = sin θ

, − π/2 < θ < π/2.

(a) Draw a picture of this arc. Is the arc traversed clockwise or counterclockwise? Is either
endpoint included in the path? Find θ so that (x(θ), y(θ)) = (1,0).

For each −π/2 < θ < π/2, denote the tangent line to C at (x(θ), y(θ)) by Tθ, and denote the
point of intersection of Tθ with the x-axis by pθ.

(b) Parametrize the line Tθ.

Definitions. For each −π/2 < θ < π/2, define sec θ as the distance of pθ from the origin, and
define tan θ as the distance of pθ from the point of tangency of Tθ with C (please see the
picture on the bottom left).

(c) Why can’t sec(π/2), tan(π/2), sec(−π/2) and tan(−π/2) be defined similarly?

(d) Show that pθ = (1/ cos θ,0), and conclude that sec θ = 1/ cos θ and tan θ = sin θ/ cos θ.
Thus, the above definitions of sec and tan are equivalent to the usual analytic ones.1

(e) Show that the identity tan2 θ + 1 = sec2 θ holds, in two ways: first, using the above
geometric definitions, and second, using the analytic definitions recovered in part (d).

Optional Problem. Show part (d) without using a parametrization.

θ

Tθ

sec θ

csc θ
tan θ

cot θ

The cosecant and cotantent have similar
interpretations— keeping the notation above
and letting qθ denote the point of intersection of
the tangent line Tθ with the y-axis, csc θ and cot θ
are equal to the distance of qθ from the origin and
point of tangency, respectively (the prefix co refers
to the complementary angle π/2 − θ). Although the
sine and cosine turn out to have more importance in
mathematics, all trigonometric functions are useful,
and their geometric meaning makes identities such as

(tan θ + cot θ)2 = sec2 θ + csc2 θ and

tan(π/2 − θ) = cot(θ)

more transparent.

1At least in the range −π/2 < θ < π/2, but the definitions extend quite readily to any θ ≠ nπ + π/2.
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Solution. (a) The parametrization

{ x(θ) = cos θ
y(θ) = sin θ

, − π/2 < θ < π/2.

describes the right unit semicircle, traversed counterclockwise. Neither endpoint is
included in the path. The unique value of θ with (x(θ), y(θ)) = (1,0) is θ = 0.

(b) The velocity of the parametrized path of part (a) is equal to

v(θ) = (− sin θ, cos θ).
Therefore, for a fixed −π/2 < θ < π/2, the tangent line Tθ is parametrized by

t↦ r(θ)+tv(θ) = (cos θ, sin θ)+t(− sin θ, cos θ) = (cos θ−t sin θ, sin θ+t cos θ), with t ∈ R.

(c) The tangent lines to C at (0,1) = (cos(π/2), sin(π/2)) and (0,−1) = (cos(−π/2), sin(−π/2))
are parallel to the x-axis, and so do not intersect it. So, pθ (and hence sec θ and tan θ)
cannot be defined in the same way.

(d) The parametrization of Tθ found in part (b) intersects the x-axis when its y-coordinate,
sin θ + t cos θ, is equal to 0. This happens at t = − sin θ/ cos θ. The corresponding x-
coordinate is

cos θ − (− sin θ

cos θ
) sin θ = cos2 θ + sin2 θ

cos θ
= 1

cos θ
.

Thus, the point pθ has coordinates (1/ cos θ,0).
It is clear that the distance of pθ from the origin is 1/ cos θ, hence sec θ = 1/ cos θ. The
point of tangency of Tθ with C is (cos θ, sin θ), and the distance of this point from pθ
may be found using the distance formula for R2:

√
(cos θ − 1

cos θ
)
2

+ (sin θ − 0)2 =
√

(cos2 θ − 2 + 1

cos2 θ
) + sin2 θ

=
√

1

cos2 θ
− 1

=
√

cos2 θ + sin2 θ − cos2 θ

cos2 θ

=
√

sin2 θ

cos2 θ

= sin θ

cos θ
.

Hence, tan θ = sin θ/ cos θ.
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(e) Since the unit circle has radius 1, the identity tan2 θ + 1 = sec2 θ comes from applying
Pythagoras’ theorem to the right triangle below

θ
1

sec θ

tan θ

Analytically, dividing the known identity cos2 θ + sin2 θ = 1 by cos2 θ, we obtain the
desired 1 + tan2 θ = sec2 θ.

Solution of the Optional Problem. Look again at the right triangle formed by the radius of
the circle, the tangent line at (cos θ, sin θ), and the x-axis, and label its vertices A, B and C
as below:

θ
1

A

B

C

We have

tan θ = opp.

adj.
= ∥BC∥

1
and sec θ = hyp.

adj.
= ∥AC∥

1
,

whence ∥BC∥ = tan θ and ∥AC∥ = sec θ.
Much simpler! Perhaps one conclusion is that solving problems using a parametrization

is not always the simplest approach.

2 (Intersection of Two Surfaces). The pair of surfaces in R3 defined by x5 + 4y2 + z = 3x2y
and 5x3 = y + 6 intersect along a curve C.

(a) Parametrize C. (Suggestion: For points on C, express y and z as functions of x.)

(b) Parametrize the tangent line to C at the point (1,−1,−8).

Solution. (a) Since points on C satisfy 5x3 = y + 6, their y-coordinate may be expressed as
a function of x as

y(x) = 5x3 − 6.

Then, since points on C satisfy x5+4y2+z = 3x2y, their z-coordinate may be expressed
as a function of x as

z(x) = 3x2y−x5−4y2 = 3x2(5x3−6)−x5−4(5x3−6)2 = −100x6+14x5+240x3−18x2−144.

Hence, one possible parametrization of C is

x↦ (x, 5x3 − 6, −100x6 + 14x5 + 240x3 − 18x2 − 144), x ∈ R.
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(b) The velocity of the parametrization of part (a) is

v(x) = (1, 15x2, −600x5 + 70x4 + 720x2 − 36x)

As usual, the tangent line to C at x = x0 may be parametrized by

t↦ r(x0) + tv(x0), t ∈ R.

At x = 1, r(1) = (1,−1,−8) and v(1) = (1,15,154), so the tangent line may be
parametrized by

t↦ (1 + t,−1 + 15t,−8 + 154t), t ∈ R.

3 (Arclength of the Trefoil Knot). There exist simple closed curves in R3 that cannot be
continuously deformed to the unit circle without introducing self-intersections along the way.
Such curves are called knotted, and the simplest knotted curve is known as the trefoil knot.
One possible parametrization of the trefoil knot2 is given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x(t) = (2 + cos 3t) cos 2t
y(t) = (2 + cos 3t) sin 2t

z(t) = sin 3t
, 0 ≤ t ≤ 2π.

(a) Verify that the arclength of the trace of the given parametrization is given by

∫
2π

0

√
25 + 16 cos(3t) + 4 cos2(3t)dt.

Unfortunately, this integral is too hard (and perhaps even not possible) to find using methods
and functions learned about in first year. Nevertheless, it is possible to understand something
about the arclength of the trefoil by bounding the integrand above and below:

(b) Show that the integrand satisfies

3 ≤
√

25 + 16 cos(3t) + 4 cos2(3t) ≤ 3
√

5 for all t.

(c) Apply the general estimate from class to conclude that

6π ≤ Arclength of trefoil ≤ 6π
√

5.

(These three numbers are close to 20, 30 and 40, respectively.)

Optional Problem. We were not very careful in our analysis, and it is possible to find better
bounds. Do this, and tell the instructor about them! For example, can you show that

8π ≤ Arclength of trefoil ≤ (3
√

5 +
√

29)π?

2More precisely, the positive trefoil. The trefoil’s mirror image is considered to be a different knot, as it
cannot be continuously deformed to the positive trefoil (without introducing self-intersections).
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Solution. (a) The three derivatives are (writing cos(nt) as cosnt and similarly for sin to
reduce clutter)

dx

dt
= (−3 sin 3t) cos 2t + (2 + cos 3t)(−2 sin 2t) = −(3 sin 3t cos 2t + 2(2 + cos 3t) sin 2t)

dy

dt
= (−3 sin 3t) sin 2t + (2 + cos 3t)(2 cos 2t) = −3 sin 3t sin 2t + 2(2 + cos 3t) cos 2t

dz

dt
= 3 cos 3t

Squaring the derivatives, we get

(dx
dt

)
2

= 9 sin2 3t cos2 2t + 12 sin 3t cos 2t(2 + cos 3t) sin 2t + 4(2 + cos 3t)2 sin2 2t

(dy
dt

)
2

= 9 sin2 3t sin2 2t − 12 sin 3t cos 2t(2 + cos 3t) sin 2t + 4(2 + cos 3t)2 cos2 2t

(dz
dt

)
2

= 9 cos2 3t

Summing the squares, we get

9 sin2 3t(cos2 2t + sin2 2t) + 4(2 + cos 3t)2(sin2 2t + cos2 2t) + 9 cos2 3t

= 9 + 4(2 + cos 3t)2

= 25 + 16 cos(3t) + 4 cos2(3t).

This is the function ∥v(t)∥2 = (dx
dt
)2 + (dy

dt
)2 + (dz

dt
)2. The arclength integral is then

∫
2π

0
∥v(t)∥dt = ∫

2π

0

√
25 + 16 cos(3t) + 4 cos2(3t)dt.

(b) For all t, we have the bounds

−1 ≤ cos(3t) ≤ 1 and 0 ≤ cos2(3t) ≤ 1.

Therefore, we have the lower bound

√
25 + 16 cos(3t) + 4 cos2(3t) ≥

√
25 − 16 + 0 =

√
9 = 3

and the upper bound

√
25 + 16 cos(3t) + 4 cos2(3t) ≤

√
25 + 16 + 4 =

√
45 = 3

√
5.

(c) The length of the parametrizing interval is 2π, hence from the general estimates from
class we conclude that

3 ⋅ 2π = 6π ≤ Arclength of trefoil ≤ 3
√

5 ⋅ 2π = 6π
√

5.
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Solution of the Optional Problem. To show the claimed bound, we make use of the following
slightly improved bounds on cos t:

0 ≤ cos(t) ≤ 1, t ∈ [0, π/2];
−1 ≤ cos(t) ≤ 0, t ∈ [π/2,3π/2];

0 ≤ cos(t) ≤ 1, t ∈ [3π/2,2π].

Split the interval [0,2π] into the following pieces, according to whether cos(3t) is positive
or negative over them:

[0, π/6], [π/6,3π/6], [3π/6,5π/6], [5π/6,7π/6], [7π/6,9π/6], [9π/6,11π/6], [11π/6,2π].

Over these pieces, cos(3t) starts positive, and then alternates between being positive and
negative.

x

y

π/6 3π/6 5π/6 7π/6 9π/6 11π/6

The lower bound on cos(3t) is therefore alternatively 0,−1,0,−1, . . . ,0. We get the lower
estimate (using the lower bound cos2(3t) ≥ 0 over every interval as before)

∫
2π

0

√
25 + 16 cos(3t) + 4 cos2(3t)dt

= ∫
π/6

0

√
25 + 16 cos(3t) + 4 cos2(3t)dt +⋯ + ∫

2π

11π/6

√
25 + 16 cos(3t) + 4 cos2(3t)dt

≥ ∫
π/6

0

√
25 + 16(0) + 4(0)dt + ∫

3π/6

π/6

√
25 + 16(−1) + 4(0)dt +⋯ + ∫

2π

11π/6

√
25 + 16(0) + 4(0)dt

= 5(π
6
) + 3(3π

6
− π

6
) + 5(5π

6
− 3π

6
) +⋯ + 5(2π − 11π

6
)

= 5(π
6
+ 2π

6
+ 2π

6
+ π

6
) + 3(2π

6
+ 2π

6
+ 2π

6
)

= 5π + 3π

= 8π.

Similarly, the upper bound on cos(3t) is alternatively 1,0,1,0, . . . ,1. We get the upper
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estimate (using the bound cos2(3t) ≤ 1 over every interval)

∫
2π

0

√
25 + 16 cos(3t) + 4 cos2(3t)dt

= ∫
π/6

0

√
25 + 16 cos(3t) + 4 cos2(3t)dt +⋯ + ∫

2π

11π/6

√
25 + 16 cos(3t) + 4 cos2(3t)dt

≤ ∫
π/6

0

√
25 + 16(1) + 4(1)dt + ∫

3π/6

π/6

√
25 + 16(0) + 4(1)dt +⋯ + ∫

2π

11π/6

√
25 + 16(1) + 4(1)dt

= 3
√

5(π
6
) +

√
29(3π

6
− π

6
) + 3

√
5(5π

6
− 3π

6
) +⋯ + 3

√
5(2π − 11π

6
)

= 3
√

5(π
6
+ 2π

6
+ 2π

6
+ π

6
) +

√
29(2π

6
+ 2π

6
+ 2π

6
)

= (3
√

5 +
√

29)π.
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