L21: Some Counterexamples

October 31, 2016 12:31 PM

SOOKy

Today: Some Counter-examples

1. Fubini might fail

The two integrals over a rectangle might not be equal to each other.

$$\frac{9x}{9} - \frac{(x_5 + \lambda_5)_5}{(x_5 + \lambda_5)_5} = \frac{(x_5 + \lambda_5)_5}{(x_5 + \lambda_5)_5} = \frac{(x_5 + \lambda_5)_5}{(x_5 + \lambda_5)_5} = \frac{(x_5 + \lambda_5)_5}{(x_5 + \lambda_5)_5}$$

$$\int_{0}^{0} \left(\int_{0}^{0} \frac{(x_{5} + \lambda_{5})_{5}}{(x_{5} + \lambda_{5})_{5}} dx^{3} \right) dx = \int_{0}^{0} \frac{x_{5} + 1}{4x} = \arctan(1)$$

$$\sum_{0}^{0} \frac{(x_{5} + \lambda_{5})_{5}}{(x_{5} + \lambda_{5})_{5}} dx^{3} = \left(\frac{x_{5} + \lambda_{5}}{2} \right)^{3} dx = \frac{x_{5} + 1}{4}$$

Integrating up/ x first,
$$\int_{0}^{1} \frac{x^{2}-y^{2}}{(x^{2}+y^{2})^{2}} dx = \left[-\frac{x}{x^{2}+y^{2}}\right]_{x=0}^{x=0} = \frac{1}{y^{2}+1}$$
So, $\int_{0}^{1} \left(\int_{0}^{1} \frac{x^{2}-y^{2}}{(x^{2}+y^{2})^{2}} dx\right) dy = -\frac{10}{4}$

The right hypothesis for Fubini's theorem. f(x,y) ontinuous everywhere on R, and there exists MEIR, so that If(x,y) < M for all (x,y) ER

Let
$$R = \begin{cases} (x,y) \in [0,1] \times [0,1] : x = \frac{q}{2^n}, y = \frac{b}{2^n} \end{cases}$$

$$x = \frac{q}{2^n}, y = \frac{b}{2^n}$$

$$x = \frac{1}{2^n}, y = \frac{b}{2^n}$$

$$x = \frac{b}{2^n}, y = \frac{b}{2^n}$$

a, b odd integers) R can be decomposed as a union of the following sets: (2,2) is the center of mars of [0,1] = [0,1] × [0,1] R = 0 Rx R3: (4,4) Rx = (1x,y) & [0,1]2: x = 2te, y 2te }

a, b odd integers) xx (x,y) = { 1 , (x,y) ER This is called the characteristic Anothin of R. MCO,172 Xx(x,y) dra does not exist. din aca(e;;) →0 € € xx(xi;, yi;). Area(e;;), where (xij, yij) is any point in Rij. Take the following sequence of partitions of [0,1) into rectangles: P, P2 ' 00/~ Boos For each Pk, and each Kij one can choose (xij, yij) to be either in R or not. In the first case, & & xx (xij, yij). Area(Rij) = 1 second case, & & xx(xi;,yis). Arec (kis) = 0

So lim over all possible partitions and choices of

(xij, yij) cont exist.

On the other hand, both iterated integrals can be checked to exist, and to be equal to zero.

3. Mixed Partvala may not be equal

At
$$(0,0)$$
, need to compute the particles from the definition.

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h}$$

$$= \lim_{h \to 0} \frac{0-0}{h} = 0$$

$$\frac{\partial f}{\partial y}(0,0) \approx \lim_{n \to \infty} \frac{f(0,n) - f(0,0)}{n}$$

For
$$(x,y) \neq (0,0)$$

 $f(x,y) = \frac{x^3y - xy^3}{x^2 + y^2}$

$$\frac{9x}{9t}(x^{3}) = \frac{(3x^{3}x^{3} - h^{2})(x^{5}x^{3}) - (x^{2}y^{3} - xy^{3})(5x)}{x^{2}x^{3}y^{3}}$$

$$\frac{1}{3st} \frac{1}{(0.0)} = \frac{1}{(0.0)} = \frac{1}{3s} \frac{1}{(0.0)} = \frac{1}{3s} \frac{1}{(0.0)} = \frac{1}{3s}$$

Need: Second partials exist and are continuous. Then have equality.