L20: Green's Theorem cont.

October 27, 2016 1:31 PM

Remark:

It is possible to develop the merchinery of curvilinear coordinates more completely.

T: IRZ(UN) -D IRZ(XY)

Sefaa, 2, 2, 2, 3, 2

OF, D.F. J×F. (...)

Last time

F is a vector field

curl F = $\nabla \times F$ 2 det ($\frac{1}{2}$) $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

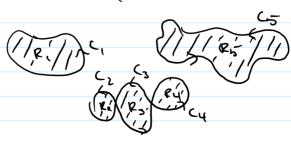
Theorem (Green's Theorem - Work Form)

Se curlisher = Se F. di

* * * * *

where C is the simple closed boundary curve of R, or writted so that R appears on the left (or it - points in to IR)

to apply to regions bounded by hon-simple cures for even nonconnected regions) break up the setup into pieces which are



Also last time, we have seen

Also last time, we have seen graph = graph , whire <u>Pros.</u> If E= of, the our F=0 everywhere Unfortunately, if F is not defined everywhere (and cannot be extended differentiably), it can happen that our F=0 conjudere it is defined but F \$ DP Example (with details left to HWB) F(x,y) = (x24y2 x24y2) for (x,y) x (0,0) curl = = 0 for (x,y) = (0,0) But, for (the unit circle oriented counterclockusse, S. F.di z 2TT So f is not path independent Simply Connected Spaces Defn: A space X is path -connected it, for any pair of points P, a in X, tere exists a curve in X concerting P to Q. are all path connected. (not path connected. Defn:

A space X is simply-connected if:
- Path-connected

· Any simple closed curve contained in X can be continuously deformed to a point in X Lo simply connected not simply connected. - simply concerted. or not simply connected Iclein bottle also not simply connected. - not simply connected, because not path connected. Remark If X is simply-connected, and F is a vector field defined everywhere in X, then for any simple closed cure C in X, F is defined everywhere in the region R bounded by C. $\left\langle \right\rangle_{c}$

Prop If Fig a vector field defined everywhere in a simplyconnected space and and F=0 everywhere in X than Fix p path independent.

Proof: (Green's Theorem)

Let C be a closed cure in X. Let P be the region bounded

Let (be a closed cure in X. Let R be the region bounded by C. Then Ic Fidir = MR curl FdA
= \$\int P O dA = 0
windows &
Vista
- Cluscos 1
Fis PZDF
Fis always F2Df path independent 4 (ways) F:X - DIR always always Cf is good)
ilverys of alverys (to if this good)
(The second
ScF.drzo curl Fzo
Colosed X simply everywhere in X
Examples
a) F(x,y) = (2y, -2xy) defined energy ver on UR2
curl & z det (ox oy) xy - zxy
Chy-Chy)
$z - (x^2)$
$z - 2y - (x^2)$ $\neq 0$ at $(x,y) = (1,1)$, for instance.
So F is not conservative.
50 F 15 NAT CONCERVATIVE.
1) 12(2) 1 - (2) 1 - (2)
b) (= (2xy + cos(2y), x2 - 2xs, n2y)
defred engaler on 122
and it = dot ()
and 1 = det (ox out - 2xxy + wslzy) x2 - 2xxm2y) = 2x - 2xxm2y) - 12x - 2xxm2y) = 0
= 2x-75m17.) - (2x-2sm(2m)) =0
3,1
So F is conservative.
Indeed, F= v(x2y + xcos(2y))
/ & d ''