L19: Change of Vars. Example, Green's Theorem for Work

October 26, 2016 11:28 AM

Today: Change of Vars. Example Example Compute double integral
Plx.y) = xy⁴
Over the region in IR bounded by
 $\begin{cases} xy = 1 & y = 2x^2 \\ x^4y = 3 & y = 1x^2 \end{cases}$
 $\begin{cases} 2x^4y = 3 & y = 4x^2 \\ y = 4x^2 \end{cases}$ $\frac{1}{x^{2}}$
 $\frac{1}{x^{2}}$
 $\frac{1}{x^{2}}$
 $\frac{1}{x^{3}}$ Want to find $T: IR^2_{(u,v)} \to IR^2_{(x,y)}$ taking a simple reguon R^* to R $TF: |u = xy$
 $Jf: |u = xy$
 $T = \sqrt{2}$
 $T = \sqrt{2}$ Tryto find inverse: u^2 $u = (x^2y^2)(y^2z) = y^3$
so, $y = \frac{3}{4}u^2v$ $\frac{4}{\gamma} = \frac{24}{3\sqrt[4]{x^2}} = \gamma^3$ Take $T: (u,v) \rightarrow (\sqrt[3]{u}, \sqrt[3]{u^2}v)$ $\frac{\partial (x,y)}{\partial (x,y)} = \begin{pmatrix} \frac{\partial x}{\partial x} & \frac{\partial x}{\partial y} \\ \frac{\partial y}{\partial x} & \frac{\partial y}{\partial y} \end{pmatrix}$ $\frac{1}{2}\left(\frac{1}{2}(4\sqrt{3})^{21/3}\cdot\frac{1}{\sqrt{3}}\sqrt{4\sqrt{3}}^{21/3}(4\sqrt{3})^{21/3}\right)$ $\frac{2}{\sqrt{2}}\left(\begin{array}{ccc}1 & 1 & 1/3 \\ 3 & \sqrt{2}/3\sqrt{1/3} & -\frac{1}{3} & \frac{\sqrt{1/3}}{\sqrt{1/3}} \\ \frac{2}{3} & \frac{\sqrt{1/3}}{\sqrt{1/3}} & \frac{1}{3} & \frac{\sqrt{2}/3}{\sqrt{1/3}}\end{array}\right)$ det $\frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{9} - (-\frac{2}{9} - \frac{1}{9}) = \frac{1}{3}$ 13 rd w's 8/2 4/2 1 \overline{r}

Vector Analysis Page 1

$$
du = \frac{9.4 \times 10^{10} \text{ m/s}}{3 \text{ m/s}^2} = \frac{1}{3} - \frac{1}{3} = \frac{3}{3} = \frac{1}{3} = \frac{1
$$

Vector Analysis Page 2

 $2 - nq$ $\Delta x = \frac{5x}{2t^5} - \frac{9x}{2t^{\prime}}$ 0f-graduent of f $\left(\begin{matrix} 3x & 3y \\ 2y & 3y \end{matrix}\right)$ z curl \vec{F} Theorem (breen's Theorem) Let R be a region in 12 bounded by a simple closed curve on C. Orient the curve so that Rappears on the lett as one traverses C. Let $\vec{\epsilon}$ be a vector field defined and differentiable everywhere in R. $\int_{c} \vec{\xi} \cdot d\vec{\tau} = \iint_{R} w \cdot \vec{\xi} d\theta$ This should be viewed as a two-dimentional version of the findanental theorem of calculus. $10:$ $\int_{c}^{c} \sigma f \cdot d\vec{r} = f(r) - f(a)$ 20' Green's theorem. The pattern in both statements is $\int_M d\omega = \int_{M} \omega$ M is some region or enour IM is boundary of the region or curve. W: object that can be integrated on 2M du: object obtained from w by partial differentiation. Example $\overrightarrow{r}(x,y) = \left(\frac{-y}{\sqrt{x^{2}+y^{2}}} - \frac{x}{\sqrt{x^{2}+y^{2}}}\right)$ $(7,2)$
 $(1,2)$
 $(1,3)$
 $(2,1)$
 $(3,2)$
 $(4,3)$
 $(5,3)$ L_{1} $\sqrt{\sqrt{2}}$ More on Path-Independence.
Reminder: if and only if <u>Reminder:</u> \vec{F} is path-independent \iff there exists ϕ : $x \rightarrow \mathbb{R}$ with \vec{r} \sim σ ϕ

F is path-independent if and only if Sc F. dr = 0
for any closed curve Cin X. Proof! Suppose F is path-independant. Let C be a closed curve. 4 a pick pants P, O (distinct) on C $\sqrt{4}$ $\int_{c} \vec{F} \cdot d\vec{r} = \int_{c} \vec{F} \cdot d\vec{r} - \int_{c} \vec{R} \cdot d\vec{r} = 0$ Conversely surveyer St. F-d2 =0 for C closed.
Take P. Q points, path C,, C2 from P to Q $\begin{array}{ccc} \begin{array}{ccc} \zeta_2 \\ \hline \end{array} & \begin{array}{ccc} \zeta_1 & \zeta_2 & \zeta_1 & \zeta_2 \\ \end{array} & \begin{array}{ccc} \zeta_1 & \zeta_2 & \zeta_1 & \zeta_2 \\ \end{array} & \begin{array}{ccc} \zeta_1 & \zeta_2 & \zeta_2 & \zeta_1 & \zeta_2 & \zeta_2 \end{array} & \begin{array}{ccc} \zeta_1 & \zeta_2 & \zeta_1 & \zeta_2 & \zeta_1 & \zeta_2 & \zeta_1 \end{array} & \begin{array}{ccc} \zeta_1 & \z$ $S_{0}\int_{C} \vec{F} \cdot d\vec{r} = \int_{C_{2}} \vec{F} \cdot d\vec{r}$ 72 Suppose $\vec{F}(x,y) = (F(x,y), F(x,y))$ $= \Delta \rho = \left(\frac{3\pi}{96}, \frac{3\pi}{96}\right)$ $\frac{3\pi}{2}$ = $\frac{3\pi}{2}$
 $\frac{3\pi}{2}$ = $\frac{3\pi}{2}$
 $\frac{3\pi}{2}$ = $\frac{3\pi}{2}$ If f is sufficiently good (has continuous second partials) This side = sight So end $\frac{3}{5}$ 2 $\frac{35}{2}$ - $\frac{35}{2}$ 2 $\frac{3^{2}F}{2^{2}x^{2}y^{2}} - \frac{3^{2}l^{2}}{2y^{2}y^{2}}$ 20 Prop
A conservative vector field has zero curl everywhere.