L8: Directional Derivative, Work

September 28, 2016 11:29 AM

Last time:

Properties of the gradient field of

- 1) of is perpendicular to level curves of f
- 2) of points in direction of fastest increase of f
- (3) 11 of1) is proportional to the rate of increase in the direction of fastest moreace.

-> We proved (1) last time.

Defo:

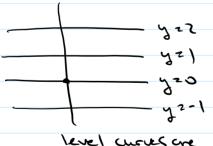
The directional derivative of fat is in direction it is the limit:

Remark:

 $\frac{\partial f}{\partial x}$ (7), $\frac{\partial f}{\partial y}$ (3) are special cases

For
$$\frac{3}{3}$$
 (7), $\vec{5}$ = (0.1)

Example



So directional derivative off a (0,0)

i'n direction for is equal to sime

 $\frac{dg}{dt}(0) = \frac{directional}{dt} \frac{derivative}{dt} of$ If we apply the chewin rule, we find $\frac{dg}{dt}(0) = \frac{\partial f}{\partial x} (x(0), y(0)) + \frac{\partial f}{\partial y} (x(0), y(0)) y'(0)$ $= \frac{\partial f}{\partial x} (x^2) y'(0) + \frac{\partial f}{\partial y} (x^2) y'(0)$ $= \frac{\partial f}{\partial x} (x^2) y'(0) + \frac{\partial f}{\partial y} (x^2) y'(0)$ $= \frac{\partial f}{\partial x} (x^2) y'(0) + \frac{\partial f}{\partial y} (x^2) y'(0)$ $= \frac{\partial f}{\partial x} (x^2) y'(0) + \frac{\partial f}{\partial y} (x^2) y'(0)$ $= \frac{\partial f}{\partial x} (x^2) y'(0) + \frac{\partial f}{\partial y} (x^2) y'(0)$

where Θ is the angle between $\widehat{OF}(\widehat{r})$ and \widehat{J} The right hand side is measurabled when $\Theta=0$ So the directional derivative of \widehat{l} at \widehat{r} is maximized when \widehat{J} points in the same direction as \widehat{f} .

Conclusion: (2) holds

If we take it along \(\tau \) (it) with \(\lap \) = 1

2 maximal directional derivative

Conclusion: (3) holds

Work:

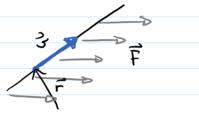
Let \(\vector\) be a vector field defined in \(X \leq \mathbb{IR}^2 \) or \(\mathbb{P}^3 \). C be a parenetrized path contained in X. C: + -> Fle), + E[a,b]

Defni

The work done by F is かんかんかん

Example: Suppose F is constant

C is a straight line としゃ でももふ



JU = 3

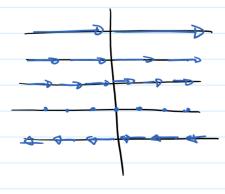
F(F(+)) · F(+) z F· f (induspendent of t)

= 11 F 11 11 cm (b-a)

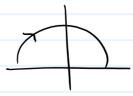
z //F/ ws 0 · Distance

In general, the work depends on C

Example: F(x,y) = (y,0)



C, 'the upper unit semiciscle, oriented clackwise == 7(4)



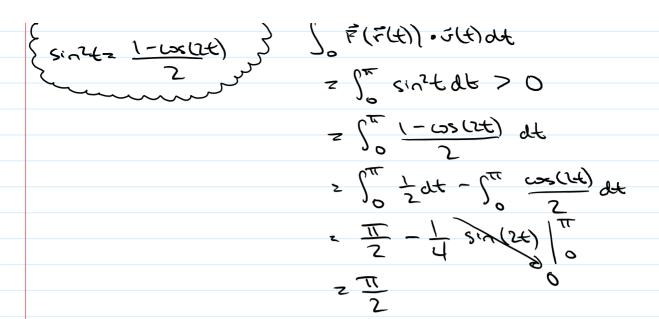
t + 2 (-ωst, smt)

t ∈ [ω,π]

J(4) = (smt, ωst)

{ cos2+ 2 cos2+ +5~2+ }

かいってとう = (sint, 0) · (smt, wst) = sin2t



 C_2 : The line segment $t \mapsto (t, 0) + (t, 1)$ (t)

Notice: FLitt) 2 0

Dependence on orientation:
The work is independent of the particular parametrization, as long as it preserves the direction.

Example:

