
MTHE 227 Midterm Solutions

1 (10 points). Let f(x, y, z) = 15
√

1 + 4y + 9xz. Let C be the segment of the twisted cubic
curve traced out by t↦ (t, t2, t3), t ∈ [0,1]. Compute ∫C f ds.

Solution. The velocity of the parametrization is v(t) = (1, 2t, 3t2). The speed is then
∥v(t)∥ =

√
1 + 4t2 + 9t4. We have

∫
C
f ds = ∫

1

0
f(x(t), y(t), z(t)) ∥v(t)∥dt

= ∫
1

0
15

√
1 + 4t2 + 9t ⋅ t3 ⋅

√
1 + 4t2 + 9t4 dt

= ∫
1

0
15(1 + 4t2 + 9t4)dt

= [15t + 20t3 + 27t5]t=1
t=0

= 15 + 20 + 27

= 62.

2. Let C be a unit circle centered at the point (1,1) in R2.

(a) (7 points) Parametrize C.

(b) (8 points) For each point of C, parametrize the line tangent to C at that point.

(If you are having trouble, you can instead parametrize the unit circle centered at the origin, as

well as its tangent lines, for a maximum of 10 points.)

Solution.

(a) To parametrize C, we translate every point of the parametrization of the unit circle by
adding the vector (1,1). So, one possible parametrization is

(1 + cos(t), 1 + sin(t)), t ∈ [0,2π].

(b) The velocity of the parametrization is v(t) = (− sin(t), cos(t)). Therefore, the line
tangent to C at (1 + cos(t), 1 + sin(t)) may be parametrized as

u↦ (1 + cos(t) − u sin(t),1 + sin(t) + u cos(t)), u ∈ R

3. (a) (6 points) Let R be the rectangle [0,1] × [0,1] in R2. Let f(x, y) = xexy. Compute

∬R f dA.

(b) (7 points) Let R be the following region in R2, bounded by four line segments:

(0,0)

(−2,2)
(0,1)

(2,2)

R
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Let f(x, y) = xy +x+y +1. Set up ∬R f dA as an iterated integral, or a sum of iterated
integrals. It is not necessary to evaluate the integral.

(c) (7 points) Compute ∫
1

0
∫

3

3x
cos(y2)dydx. (Suggestion: Change the order of integration.

The function cos(y2) has no elementary antiderivative.)

Solution.

(a) By Fubini,

∬
R
f dA = ∫

1

0
(∫

1

0
xexydy)dx

= ∫
1

0
[exy]y=1y=0 dx

= ∫
1

0
ex − 1dx

= (e − 1) − 1

= e − 2.

(b) We can split the region into two triangles (0,0), (−2,2), (0,1) and (0,0), (2,2), (0,1),
both of which are Type I regions (in fact, Type III regions).

For the left triangle, the top boundary is the line y = −x/2+1, and the bottom boundary
is the line y = −x.

For the right triangle, the top boundary is the line y = x/2+1, and the bottom boundary
is the line y = x.

Therefore, by Fubini, the double integral is

∬
R
f(x, y)dA = ∫

0

−2 ∫
−x/2+1

−x
xy + x + y + 1dydx + ∫

2

0
∫

x/2+1

x
xy + x + y + 1dydx.

(c) The region of integration is the following triangle:

(0,0)

(0,3) (1,3)

Therefore, the integral with changed order of integration is

∫
3

0
∫

y/3

0
cos(y2)dydx = ∫

3

0

y

3
cos(y2)dx = [1

6
sin(y2)]

y=3

y=0
= sin(9)

6
.
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4 (15 points). Let C be the line segment connecting the points (2,0) and (1,6) in R2. Let
F be the vector field F(x, y) = (x, y). Compute the flux ∫C F ⋅ n̂ds of F across C, with the
normal pointing up and to the right.

Solution. The line segment can be parametrized by t ↦ (2 − t, 0 + 6t), t ∈ [0,1]. The
velocity of this parametrization is v(t) = (−1,6). Therefore, n+(t) = (6,1) is a normal that
points up and to the right.

We have
F(r(t)) ⋅ n+(t) = (2 − t, 6t) ⋅ (6,1) = (2 − t)6 + (6t)1 = 12.

Therefore,

∫
C
F ⋅ n̂ds = ∫

1

0
12dt = 12.

5. Let C = C1 +C2 +C3 +C4 be the (oriented and closed) piecewise curve below:

C4

C2

C1C3

(1,1)

(2,2)(−2,2)

(−1,1)

(0,0)

The dashed lines are not part of the curve C. The curves C1 and C3 are straight line
segments, and the curves C2 and C4 are arcs of circles.

Let F be the vector field

F(x, y) =
⎛
⎝

−y√
x2 + y2

,
x√

x2 + y2
⎞
⎠
.

(a) (10 points) Parametrize the curves C1, C2, C3 and C4, with the orientations indicated
by the arrows. For each i = 1,2,3,4, compute ∫Ci

F ⋅ dr. Compute ∫C F ⋅ dr.

(b) (5 points) Does there exist a real-valued function φ so that F = ∇φ? If so, find such a
φ; if not, give a reason why not. (Is F path-independent?)

(c) (5 points) Let f(x, y) denote the function

∂

∂x

⎛
⎝

x√
x2 + y2

⎞
⎠
− ∂

∂y

⎛
⎝

−y√
x2 + y2

⎞
⎠
.

Compute f(x, y).
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(d) (10 points) Let R be the region bounded by C. Compute ∬R f dA. (Suggestion: Use

polar coordinates.)

Remark. As a check on your answers, you should find that ∫C F ⋅ dr = ∬R f dA (Green’s
Theorem). However, you may not apply Green’s Theorem in your solution of this question.

Solution.

(a) The inner circle has radius
√

12 + 12 =
√

2, and the outer circle has radius
√

22 + 22 =
√

8.
The right angle is arctan(1

1) = arctan(1) = π/4 and the left angle is arctan(−11 ) =
arctan(−1) = 3π/4. The four paths may be parametrized as follows:

C1 ∶ t↦ (1 + t,1 + t), t ∈ [0,1],
C2 ∶ t↦ (

√
8 cos t,

√
8 sin t), t ∈ [π/4, 3π/4],

C3 ∶ t↦ (2 − t,2 − t), t ∈ [0,1]
C4 ∶ t↦ (−

√
2 cos t,

√
2 sin t), t ∈ [π/4,3π/4].

The velocity vectors are

C1 ∶ (1,1),
C2 ∶ (−

√
8 sin t,

√
8 cos t),

C3 ∶ (−1,−1),
C4 ∶ (

√
2 sin t,

√
2 cos t).

Therefore, the dot products F(r(t)) ⋅ v(t) are

C1 ∶
⎛
⎝

−(1 + t)√
(1 + t)2 + (1 + t)2

,
1 + t√

(1 + t)2 + (1 + t)2
⎞
⎠
⋅ (1,1) = 0,

C2 ∶ (
−
√

8 sin t√
8

,

√
8 cos t√

8
) ⋅ (−

√
8 sin t,

√
8 cos t) =

√
8(sin2 t + cos2 t) =

√
8,

C3 ∶
⎛
⎝

−(2 − t)√
(2 − t)2 + (2 − t)2

,
2 − t√

(2 − t)2 + (2 − t)2
⎞
⎠
⋅ (−1,−1) = 0,

C4 ∶ (−
√

2 sin t√
2

,−
√

2 cos t√
2

) ⋅ (
√

2 sin t,
√

2 cos t) = −
√

2(sin2 t + cos2 t) = −
√

2.

So that,

∫
C1

F ⋅ dr = ∫
1

0
0dt = 0,

∫
C2

F ⋅ dr = ∫
3π/4

π/4

√
8dt =

√
8(3π

4
− π

4
) =

√
8
π

2
,

∫
C3

F ⋅ dr = ∫
1

0
0dt = 0,

∫
C4

F ⋅ dr = ∫
3π/4

π/4
−
√

2dt = −
√

2(3π

4
− π

4
) = −

√
2
π

2
.

4



Finally,

∫
C
F ⋅ dr = (

√
8 −

√
2) π

2
.

Remark. This computation could be done in polar coordinates.

The vector field is
F(x, y) = −y√

x2 + y2
ex +

x√
x2 + y2

ey.

This vector field is tangent to circles counterclockwise and has magnitude 1 everywhere.
Therefore, in polar coordinates,

F(r, θ) = eθ(r, θ).

We could verify this using the conversion formulas

ex(r, θ) = cos θ er(r, θ) − sin θ eθ(r, θ)
ey(r, θ) = sin θ er(r, θ) + cos θ eθ(r, θ).

We have

F(r, θ) = −r sin θ√
r2 cos2 θ + r2 sin2 θ

(cos θ er(r, θ) − sin θ eθ(r, θ)) +⋯

⋯+ r cos θ√
r2 cos2 θ + r2 sin2 θ

(sin θ er(r, θ) + cos θ eθ(r, θ))

= eθ(r, θ).

The four paths can be parametrized as

C1 ∶ t↦ (t, π/4), t ∈ [
√

2,
√

8],
C2 ∶ t↦ (

√
8, π/4 + t), t ∈ [0, π/2],

C3 ∶ t↦ (
√

8 − t, 3π/4), t ∈ [0,
√

2],
C4 ∶ t↦ (

√
2, 3π/4 − t), t ∈ [0, π/2].

The expression for the velocity in polar coordinates is v(t) = dr
dt er(r, θ) + r dθdt eθ(r, θ).

Therefore,

F(r(t)) ⋅ v(t) = Fr(r(t), θ(t)
dr

dt
+ Fθ(r(t), θ(t))r

dθ

dt

(note that Fr and Fθ are the r and θ components of F, respectively, not partial deriva-
tives) and so the work is

∫
C
F ⋅ dr = ∫

b

a
Fr(r, θ)

dr

dt
+ Fθ(r, θ) r

dθ

dt
dt.
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We have,

∫
C1

F ⋅ dr = ∫
√
8

√
2

0 ⋅ 1 + 1 ⋅ t ⋅ 0dt = 0,

∫
C2

F ⋅ dr = ∫
π/2

0
0 ⋅ 0 + 1 ⋅

√
8 ⋅ 1dt =

√
8 ⋅ π/2,

∫
C3

F ⋅ dr = ∫
√
2

0
0 ⋅ (−1) + 1 ⋅ (

√
8 − t) ⋅ 0dt = 0,

∫
C4

F ⋅ dr = ∫
π/2

0
0 ⋅ 0 + 1 ⋅

√
2 ⋅ (−1)dt = −

√
2 ⋅ π/2.

So that

∫
C
F ⋅ dr = (

√
8 −

√
2) π

2
,

as before.

(b) Here are two possible paths starting and ending at (2,2). One is simply the constant
path that stays at the point (2,2); there is no work done along such a path. The other
is C, and we found that the work done by F around C is nonzero. Therefore, F is not
path-independent and cannot be conservative.

Stated another way, by the fundamental theorem of calculus for line integrals, for paths
C starting and ending at P , we must have

∫
C
∇f ⋅ dr = f(P ) − f(P ) = 0,

but this is not satisfied by C.

For yet another argument, one could compare the work done along different parts of
C. For instance, take −C1 and C2 +C3 +C4. Both are paths from (2,2) to (1,1), but
there is no work done along the first and work done along the second.

(c) For the partial with respect to x, we have

∂

∂x

⎛
⎝

x√
x2 + y2

⎞
⎠
=

√
x2 + y2 − x(1/2)(x2 + y2)−1/2(2x)

x2 + y2

= (x2 + y2) − x2
(x2 + y2)3/2

= y2

(x2 + y2)3/2 .

The partial with respect to y is found similarly to be −x2/(x2 + y2)3/2. Therefore,

f(x, y) = x2 + y2
(x2 + y2)3/2 = (x2 + y2)−1/2.
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(d) The integral in polar coordinates is

∫
3π/4

π/4 ∫
√
8

√
2

1

r
r drdθ = ∫

3π/4

π/4 ∫
√
8

√
2
drdθ

= ∫
3π/4

π/4
(
√

8 −
√

2)dθ

= (
√

8 −
√

2) [θ]θ=3π/4
θ=π/4

= (
√

8 −
√

2)π
2
.

6 (10 points). True or False? 2 points each. No justification necessary. No penalty for
incorrect answers.

(a) For any vector field F, the value of ∫C F ⋅ dr depends only on the two endpoints of C.

(b) For any conservative vector field, there exists a unique potential function.

(c) The gradient field of a function is perpendicular to the level curves of that function at
every point.

(d) For any parametrization of a curve C, the normal vector n+ always points away from
the origin.

(e) It is possible for a parametrized path to intersect itself.

Solution.

(a) False. This is true only for conservative fields. There are many counterexamples; the
one we have seen in class is the field F(x, y) = (y,0), and paths C1 — line segment
from (−1,0) to (1,0) along the x-axis — and C2 — the top unit semicircle from from
(−1,0) to (1,0).

(b) False. Adding any constant to a potential function gives another potential function for
the same vector field, so potential functions are not unique.

(c) True. We have proved this in class.

(d) False. Consider, for instance, a clockwise parametrization of a circle.

(e) True. For instance, t↦ (t(t2 − 1), t2 − 1) passes through (0,0) at t = −1 and t = 1.
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