
MTHE 227 Practice Midterm Solutions

1 (10 points). Let f(x, y, z) = 3
√

1 + 4x2 + 4z. Let C be the segment of the space parabola
traced out by t↦ (t, t2, t2), t ∈ [0,1]. Compute ∫C f ds.

Solution. The velocity of the given path is v(t) = (1, 2t, 2t), hence its speed is ∥v(t)∥ =√
1 + (2t)2 + (2t)2 =

√
1 + 8t2. Then, we have

∫
C
f ds = ∫

1

0
f(x(t), y(t), z(t))

√
1 + 8t2 dt

= ∫
1

0
3
√

1 + 4(t)2 + 4(t2)
√

1 + 8t2 dt

= ∫
1

0
3(1 + 8t2)dt

= [3t + 8t2]t=1
t=0

= 3 + 8

= 11.

2. Let C be the ellipse (x2/4) + (y2/9) = 1 in R2.

(a) (7 points) Parametrize C.

(b) (8 points) For each point of C, parametrize the line tangent to C at that point.

(If you are having trouble, you can instead parametrize the circle x2+y2 = R2, as well as its tangent

lines, for a maximum of 10 points.)

Solution.

(a) One possible parametrization is t↦ (2 cos t, 3 sin t), t ∈ [0,2π].

(b) At a fixed t0, the velocity of the above parametrization is v(t0) = (−2 sin t0, 3 cos t0).
Therefore, a tangent line to C at r(t0) may be parametrized by

u↦ r(t0) + uv(t0), u ∈ R.

Written out more explicitly, this is u↦ (2 cos t0 − 2u sin t0, 3 cos t0 + 3u sin t0), u ∈ R.
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3 (15 points). Let C be the segment of the hyperbola xy = 4 from (1,4) to (4,1) in R2. Let
F be the vector field F(x, y) = (x+y, x−y). Compute the work ∫C F ⋅dr done by F along C.

Solution. The segment of the hyperbola is the graph of the function y = 4/x over the
interval [1,4]. Therefore, it can be parametrized as t ↦ (t, 4/t) =∶ r(t). The velocity of the
parametrization is v(t) = (1, −4/t2). The integral is then

∫
C
F ⋅ dr = ∫

4

1
F(r(t)) ⋅ v(t)dt

= ∫
4

1
(t + 4

t
, t − 4

t
) ⋅ (1, − 4

t2
)dt

= ∫
4

1
(t + 4

t
− 4

t
+ 16

t3
) dt

= [t
2

2
− 8

t2
]
t=4

t=1

= (16

2
− 8

16
) − (1

2
− 8

1
)

= 8 − 1/2 − 1/2 + 8

= 15.

4. (a) (6 points) Let R be the rectangle [0,1] × [0,1] in R2. Let f(x, y) = y cos(πxy).
Compute ∬R f dA.

(b) (7 points) Let R be the following quadrilateral in R2:

(0,0)

(−1,1)

(0,2)

(1,1)

Let f(x, y) = xy +x+y +1. Set up ∬R f dA as an iterated integral, or a sum of iterated
integrals. It is not necessary to evaluate the integral.

(c) (7 points) Compute ∫
2

0
∫

1

y/2
e−x

2

dxdy. (Suggestion: Change the order of integration. The

function e−x
2
has no elementary antiderivative.)

Solution.
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(a) By Fubini’s theorem for rectangles, the integral may be computed as (it is better to
do the integral with respect to x first, because of the y term outside of the cosine):

∫
1

0
∫

1

0
y cos(πxy)dxdy = ∫

1

0
[ 1

π
sin(πxy)]

x=1

x=0

dy

= 1

π ∫
1

0
sin(πy) − sin(0)dy

= 1

π2
[− cos(πy)]y=1y=0

= 1

π2
(− cos(π) + cos(0))

= 2

π2
.

(b) We break the region into two triangles with vertices (−1,1), (0,2), (0,0) and (1,1), (0,2), (0,0)
and use Fubini’s theorem. The boundaries of the left triangle are segments of lines
y = x + 2 (top boundary) and y = −x (bottom boundary). The boundaries of the right
triangle are segments of lines y = −x+ 2 (top boundary) and y = x (bottom boundary).
Therefore, Fubini’s theorem tells us that

∬
R
f dA = ∫

0

−1
∫

x+2

−x
f(x, y)dydx + ∫

1

0
∫
−x+2

x
f(x, y)dydx.

(c) The integral is impossible as written, so we must change the order of integration. The
region of integration is a triangle:

(0,0)

(1,2)

(1,0)

Switching the order of integration, we get

∫
1

0
∫

2x

0
e−x

2

dydx = ∫
1

0
2xe−x

2

dx

= [−e−x2]x=1
x=0

= 1 − e−1
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5. Let C1 be the circle x2 + y2 = 1, with normal pointing toward the origin, and C2 the circle
x2 + y2 = 4, with normal pointing away from the origin.

C1C2 n1

n2

Let F be the vector field

F(x, y) = ( xex2+y2 , yex2+y2 ) .

(a) (15 points) Parametrize the curves C1 and C2. Compute ∫C1
F ⋅ n̂ds + ∫C2

F ⋅ n̂ds.

(b) (5 points) Let f(x, y) denote the function

∂

∂x
(xex2+y2) + ∂

∂y
(yex2+y2) .

Compute f(x, y).

(c) (10 points) Let R be the region bounded by C1 and C2. Compute ∬R f dA. (Suggestion:

Use polar coordinates. You may need to integrate one of the terms by parts.)

Remark. As a check on your answers, you should find that ∫C1
F ⋅ n̂ds+∫C2

F ⋅ n̂ds = ∬R f dA
(Green’s Theorem). However, you may not apply Green’s Theorem in your solution of this
question.

(a) The inner circle C1 may be parametrized by t ↦ (cos t, sin t), t ∈ [0,2π]. The velocity
is v(t) = (− sin t, cos t) and n−(t) = (− cos t, − sin t) is the required normal. We then
have

∫
C1

F ⋅ n̂ds = ∫
2π

0
(cos t e, sin te) ⋅ (− cos t, − sin t)dt

= ∫
2π

0
−e(cos2 t + sin2 t)dt

= −2π e.

The outer circle C2 may be parametrized by t ↦ (2 cos t, 2 sin t), t ∈ [0,2π]. The
velocity is v(t) = (−2 sin t, 2 cos t) and n+(t) = (2 cos t, 2 sin t) is the required normal.

∫
C2

F ⋅ n̂ds = ∫
2π

0
(2 cos t e4, 2 sin te4) ⋅ (2 cos t, 2 sin t)dt

= ∫
2π

0
4e4(cos2 t + sin2 t)dt

= 2π 4e4.
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Therefore,

∫
C1

F ⋅ n̂ds + ∫
C2

F ⋅ n̂ds = 2π (4e4 − e) .

(b) We have

∂

∂x
(xex2+y2) + ∂

∂y
(yex2+y2) = (ex2+y2 + xex2+y2(2x)) + (ex2+y2 + yex2+y2(2y))

= 2ex
2
+y2 + 2(x2 + y2)ex2+y2

(c) In polar coordinates,

f(r, θ) = 2er
2 + 2r2er

2

and the region of integration is described by 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π. Therefore,

∬
R
f dA = ∫

2π

0
∫

2

1
(2er

2 + 2r2er
2) rdrdθ.

To find the second integrand, use parts:

∫ r2(2rer2)dr = r2er2 − ∫ 2rer
2

dr

and notice that the second term on the right cancels out the first term in ∬R f dA.
Therefore,

∫
2π

0
∫

2

1
2rer

2 + 2r3er
2

drdθ = ∫
2π

0
[r2er2]r=2

r=1
dθ

= 2π(4e4 − e),

agreeing with the result of part (a)!

6 (10 points). True or False? 2 points each. No justification necessary. No penalty for
incorrect answers.

(a) The polar coordinates of every point of R2 are unique (for every point of R2, there is
a unique pair (r, θ) such that (r, θ) are the polar coordinates of that point).

(b) For any conservative vector field, there exists a unique potential function.

(c) The value of the work done by a force represents the change in kinetic energy caused
by that force between the two endpoints of the path.

(d) The flux of a vector field that is everywhere parallel to a path across that path is equal
to zero.

(e) Any parametrized path has exactly two possible orientations.
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Solution.

(a) This is false. For instance, all of the following pairs (r, θ) describe the same point in
the plane: (1,0) = (1,2π) = (1,4π) = (1,6π) = ⋯.

(b) This is false. If F = ∇f , then F = ∇(f +C) for any real number C, since ∇f = ∇(f +C).

(c) This is true. It is an informal statement of the Work-Energy theorem, discussed in the
very first lecture.

(d) This is true. If the vector field is everywhere parallel to the path, meaning parallel to
the tangent vectors of the path, the vector field is perpendicular to the normal vectors
of the path, hence has no flux across the curve.

(e) This is false in general. The ‘figure 8’ curve provides a counterexample, as discussed
in lecture. It is true for simple paths, however, which may be a source of confusion.
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