
MTHE 227 Problem Set 11
Due Thursday December 01 2016 at the beginning of class

1. As a reminder, a torus with radii a and b is the surface of revolution of the circle (x −
b)2 + z2 = a2 in the xz-plane about the z-axis (a and b are positive real numbers, with b > a).

(For two pictures of a torus, see the last page of this problem set.)

(a) Find a function f(r, θ, z) and a constant c ∈ R so that the equation f(r, θ, z) = c in
cylindrical coordinates describes the torus with radii a and b.

(b) Set up two triple integrals in cylindrical coordinates for the volume of the solid torus
(the three-dimensional region bounded by a torus) with radii a and b : one with order
of integration dr dz dθ and the other with order of integration dz dr dθ.

(c) Check that the volume of the solid torus is equal to (πa2)(2πb) = 2π2a2b. (It is only
necessary to integrate using one of the orders of part (b).)

(You may need to make a sin / cos-type trigonometric substitution.)

2. Find the volume of the region bounded by the surface z = x2/4, and the three planes
y = 0, y = ` and z =H in R3, as a function of ` and H.

3. Imagine a pool of still fluid (in other words, the fluid is static and in equilibrium). Let h
denote the vertical coordinate, measured down from the surface of the fluid, and let x and
y denote the usual Cartesian coordinates. As you likely know, if the fluid is incompressible
(this is true of water, to a good approximation), the pressure exerted by the fluid varies as1

p(h, y, z) = δgh,

where δ is the density of the fluid (assumed uniform), and g is the gravitational constant.
Because of the pressure difference at different heights, a region submerged in the fluid

will have a net upward force on it, called the buoyant force, which may be computed as
follows.

Let S be a closed (smooth, orientable) surface submerged in the fluid, bounding a region
R, and choose inward pointing normals. A small piece of S around the point (x, y, h) with
area ∆A will have a force directed perpendicular to it and equal in magnitude (to a good
approximation) to p(x, y, h)∆A (this is just the definition of pressure). To find its component
directed up, we can compute the dot product

−eh ⋅ ((p(x, y, h)∆A) N̂(x, y, h)) = (−δgheh) ⋅ N̂(x, y, h)∆A

(the negative sign before eh is necessary because of the convention that h points down).
Defining the vector field

B(x, y, h) ∶= (0,0,−δgh) = −δgheh,
1Instructor’s note: On the other hand, if you do not know why, and are curious why, ask me!
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and taking ∆A→ 0, the buoyant force on S is therefore equal to the integral

Buoyant Force =∬
S
B ⋅ N̂dS =∬

S
B ⋅ dS.

(a) Prove the following theorem, applying the divergence theorem:

Theorem (Archimedes). The buoyant force on S is equal to the weight of the fluid
displaced by S.

(Take care with the orientation of N̂. In the statement, weight is the product of mass
and the gravitational constant g.)

(b) Justify using (b): If R is a region of uniform density d placed in the pool, it will rise
if d < δ and sink if d > δ.

Optional Problem. Let R be a ship modeled as a solid of the kind looked at in Problem 2,
of mass 1,080,000 kg, length ` = 30 m and height H = 10 m. Take the fluid to be water (so,
with density δ = 1,000 kg/m3). When the ship is floating at the surface of the water, where
will the water level be (measured from the bottom of the ship)?

4. Let R be the region 1 ≤ x2 + y2 ≤ 9, 0 ≤ z ≤ 2 in R3, and let S be its boundary surface,
oriented outward from R. Let F be the vector field

F(x, y, z) = (2x, xy2, xyz).

(a) Sketch R. Notice that the boundary surface S splits into four pieces.

(b) Compute the flux integral ∬S F ⋅ dS directly, by parametrizing each of the four pieces
and computing the flux of F across each.

(c) Compute divF, and compute the triple integral ∭R divFdV directly. The answer
should be equal to that of part (b) by the divergence theorem.

5. As a reminder, spherical coordinates on R3 are given by the following map D → R3
(x,y,z):

x(ρ, θ, φ) = ρ cos(θ) sin(φ),
y(ρ, θ, φ) = ρ sin(θ) sin(φ),
z(ρ, θ, φ) = ρ cos(φ),

where
D = {(ρ, θ, φ) ∈ R3 ∶ ρ ≥ 0, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π}.
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Check that

∣det
∂(x, y, z)
∂(ρ, θ, φ)∣ ∶=
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det
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⎝

∂x/∂ρ ∂x/∂θ ∂x/∂φ
∂y/∂ρ ∂y/∂θ ∂y/∂φ
∂z/∂ρ ∂z/∂θ ∂z/∂φ

⎞
⎟
⎠

RRRRRRRRRRRRRR
= ρ2 sin(φ),

where ∣⋅∣ denotes the absolute value.

Just for fun (No need to hand-in). Back to the torus! We have seen that, parametrizing the
generating circle of the torus with radii a and b by

t↦ (b + a cos(t), a sin(t)), t ∈ [0,2π],

the torus may be parametrized by

σ ∶ (θ, t)↦ ((b + a cos(t)) cos(θ), (b + a cos(t)) sin(θ), a sin(t)), θ ∈ [0,2π], t ∈ [0,2π].

(This is likely a special case of the parametrization of the surface of revolution of a general
parametrized curve that you found in Problem Set 9.)

Allow θ and t in the parametrization of a torus to be arbitrary real numbers, disregarding
the requirement that a parametrization of a surface be one-to-one in its interior.

Let a = 1 and b = 2. Write out the path s↦ σ(2s, 3s), s ∈ [0,2π] in Cartesian coordinates.
How many times does this path wind around the z-axis as s ranges from 0 to 2π? How many
times does it wind around the circle x2 + y2 = 4, z = 0?

This recovers the parametrization of the trefoil from the beginning of the term! Here are
two views of this curve on the surface of a torus:

Taking other pairs of integers (p, q) the paths s ↦ σ(ps, qs), s ∈ [0,2π] define curves on
the torus surface known as (p, q)-torus links (a link is a knot with possibly more than one
connected piece).

Some things to ponder: What is the condition on the pair (p, q) so that the (p, q)-
torus link is a knot (in other words, has a single connected piece)? What will the path
s↦ σ(s,

√
2s), s ∈ R look like?
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