MTHE 227 PROBLEM SET 7 Due Thursday November 03 2016 at the beginning of class

1 (Jacobian of a Linear Map). For x(u, v) = au + bv and y(u, v) = cu + dv, show that

$$\frac{\partial(x,y)}{\partial(u,v)} \coloneqq \begin{pmatrix} \partial x/\partial u & \partial x/\partial v \\ \partial y/\partial u & \partial y/\partial v \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Thus, the Jacobian of the map $T: \mathbb{R}^2_{(u,v)} \to \mathbb{R}^2_{(x,y)}$ given by $(u,v) \mapsto (au + bv, cu + dv)$ is everywhere equal to T itself (and, as discussed in lecture, any linear map from \mathbb{R}^2 to itself can be written in this form). This fact is consistent with the intuition that the Jacobian of T at (u_0, v_0) is the linear map that best approximates T at (u_0, v_0) . (If T is itself linear, then the best linear approximation is itself!)

2 (Geometry of Linear Maps). Let

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

be a 2×2 matrix with det $A = ad - bc \neq 0$. In linear algebra, one proves that A may be brought to the matrix

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

by finitely many of the following three operations (called elementary row operations):

(Op. 1) Switching two rows.

- (Op. 2) Multiplying every entry of a row by a nonzero number.
- (Op. 3) Adding a row to another row.

(More generally, any matrix may be brought to its reduced row-echelon form (rref) by a succession of the above three operations. All matrices with nonzero determinant have the identity matrix as their rref.)

(a) Define the following matrices:

$$E_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad E_{2}(\lambda, 1) = \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix}, \quad E_{2}(\lambda, 2) = \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}, \quad E_{3}(1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad E_{3}(2) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

Check that multiplying A on the left by:¹

- (i) E_1 switches the two rows of A;
- (ii) $E_2(\lambda, 1)$ multiplies every entry of the first row of A by λ ;
- (iii) $E_2(\lambda, 2)$ multiplies every entry of the second row of A by λ ;

¹Note: Multiplying A on the left by E_i means $E_i \cdot A$.

- (iv) $E_3(1)$ adds the second row to the first row; and
- (v) $E_3(2)$ adds the first row to the second row.
- (b) Conclude from part (a), and the linear algebra fact that A may be brought to the identity matrix by a finite sequence of elementary row operations, that there exists a sequence of matrices M_1, \ldots, M_r , with each M_i being one of $E_1, E_2(\lambda, 1), E_2(\lambda, 2), E_3(1)$ or $E_3(2)$, so that

$$M_r M_{r-1} \cdots M_2 M_1 A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

(c) Check that the inverses of the elementary matrices are:

$$E_1^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad E_2(\lambda, 1)^{-1} = \begin{pmatrix} \frac{1}{\lambda} & 0 \\ 0 & 1 \end{pmatrix}, \quad E_2(\lambda, 2)^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{\lambda} \end{pmatrix}, \quad E_3(1)^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \quad E_3(2)^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

Optional Problem. Check that the inverses of elementary matrices may be written in terms of elementary matrices:

$$E_1^{-1} = E_1,$$

$$E_2(\lambda, 1)^{-1} = E_2\left(\frac{1}{\lambda}, 1\right),$$

$$E_2(\lambda, 2)^{-1} = E_2\left(\frac{1}{\lambda}, 2\right),$$

$$E_3(1)^{-1} = E_2(-1, 1) E_3(1) E_2(-1, 1),$$

$$E_3(2)^{-1} = E_2(-1, 2) E_3(2) E_2(-1, 2).$$

(d) Recall that a 2×2 matrix defines a linear transformation on \mathbb{R}^2 by

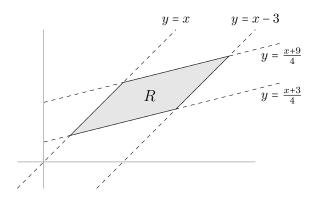
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}.$$

For each of E_1^{-1} , $E_2(\lambda, 1)^{-1}$, $E_2(\lambda, 2)^{-1}$, $E_3(1)^{-1}$ and $E_3(2)^{-1}$, draw the image of the unit square $[0, 1] \times [0, 1]$ under the associated linear transformation. Identify each one as being a scaling, shear, or reflection about the diagonal x = y.

- (e) Conclude that an arbitrary linear transformation $\mathbb{R}^2 \to \mathbb{R}^2$ with nonzero determinant may be realized as a composition of finitely many scalings, shears, and reflections about the diagonal.
- (f) Draw the image of the unit square under each of the following linear maps, and decompose each of the linear maps into a sequence of scalings, shears, and reflections about the diagonal (row-reduce the matrix, keeping track of the steps!):

(i)
$$\begin{pmatrix} 2 & 0 \\ 1 & 6 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

3 (Double Integral Over a Parallelogram, Once Again). Recall the parallelogram R with vertices (1, 1), (3, 3), (5, 2), (7, 4) from Problem Set 5:



The form of the equations of the boundary lines suggests that

$$u(x,y) = y - x,$$
 $v(x,y) = y - \frac{x}{4}$

is a good change of variables for this problem.

This describes the inverse map $T^{-1} \colon \mathbb{R}^2_{(x,y)} \to \mathbb{R}^2_{(u,v)}$.

- (a) What is the region $R^* = T^{-1}(R)$ in $\mathbb{R}^2_{(u,v)}$?
- (b) Solve for x = x(u, v) and y = y(u, v) as functions of u and v. (This amounts to finding the inverse of T^{-1} , or, in other words, finding T.)
- (c) Compute the Jacobian $\frac{\partial(x,y)}{\partial(u,v)}$.
- (d) Compute $\iint_R (y-x)^{2016} dA$ by applying the change of variables theorem.