MTHE 227 PROBLEM SET 2

Due Wednesday September 28 2016 at the beginning of class

1 (Great Circles). The intersection of a sphere with a plane passing through its center is called a *great circle*. Let Γ be the great circle that is the intersection of the plane x+y+z=0 with the sphere $x^2+y^2+z^2=R^2$ of radius R centered at the origin.

- (a) Find a parametrization of Γ . (Suggestion: Begin by finding two perpendicular vectors lying in the plane x + y + z = 0.)
- (b) Check that the arclength of Γ is equal to $2\pi R$.
- (c) If $t \mapsto (x(t), y(t), z(t))$ is a parametrization of Γ , explain why $t \mapsto (x(t), y(t), -z(t))$ is a parametrization of the great circle Γ' cut out from the same sphere by x + y z = 0.

Optional Problem. Find the points of intersection of Γ and Γ' , and find the angle of intersection between the tangent lines to Γ and Γ' at these points.

2 (Velocity Perpendicular to Position). For a pair of parametrized paths $\mathbf{q}(t)$, $\mathbf{r}(t)$ in \mathbb{R}^3 , show that

$$\frac{d}{dt} (\mathbf{q}(t) \cdot \mathbf{r}(t)) = \mathbf{q}'(t) \cdot \mathbf{r}(t) + \mathbf{q}(t) \cdot \mathbf{r}'(t)$$

(here \cdot denotes the dot product and ' the derivative with respect to t). Apply this identity to show the following: if the velocity of a parametrized path is always perpendicular to its position, then the curve traced out by the parametrization lies on the surface of a sphere.

- **3** (Flow Lines). (a) Check that the path $t \mapsto (2\cos(2t), \sin 2t)$ is a flow line of the vector field $\mathbf{F}(x,y) = (-4y,x)$ on \mathbb{R}^2 . Sketch the vector field, the path, and check that the path is everywhere tangent to \mathbf{F} .
 - (b) Find the flow lines of the vector field $\mathbf{G}(x,y) = (1, -y^2)$, defined on the first quadrant $\{(x,y): x>0, y>0\}$ of \mathbb{R}^2 . Which flow line passes through the point (1,1)? (*Hint:* It may help to find the derivative $\frac{d}{dt}(1/t)$.)

1